EMV ‘96
Integrated Circuit Card
Specification for Payment Systems

Version 3.1.1
May 31, 1998

© 1998 Europay International S.A., MasterCard International Incorporated, and Visa International Service
Assaociation. All rights reserved. Permission to copy and implement the material contained herein is
granted subject to the conditions that (i) any copy or re-publication must bear this legend in full, (ii) any
derivative work must bear a notice that it is not the Integrated Circuit Card Specification for Payment
Systems jointly published by the copyright holders, and (iii) that none of the copyright holders shall have
any responsibility or liability whatsoever to any other party arising from the use or publication of the
material contained herein.

The authors of this documentation make no representation or warranty regarding whether any particular
physical implementation of any part of this Specification does or does not violate, infringe, or otherwise
use the patents, copyrights, trademarks, trade secrets, know-how, and/or other intellectual property of third
parties, and thus any person who implements any part of this Specification should consult an intellectual
property attorney before any such implementation. The following Specification includes public key
encryption technology, which is the subject matter of patents in several countries. Any party seeking to
implement this Specification is solely responsible for determining whether their activities require a license
to any technology including, but not limited to, patents on public key encryption technology. Europay
International S. A., MasterCard International Incorporated, and Visa International Service Association shall
not be liable for any party’s infringement of any intellectual property right.

May 31, 1998 Contents i

Table of Contents

1. Scope IX

1.1 EMV Specification Version Numbering X
2. Normative References Xi
3. Definitions Xiv
4. Abbreviations and Notations XVili

Part | - Electromechanical Characteristics, Logical Interface, and
Transmission Protocols
1. Electromechanical Interface -1
1.1 Mechanical Characteristics of the ICC 1-1
1.1.1 Physical Characteristics 1-1
1.1.2 Dimensions and Location of Contacts 1-1
1.1.3 Contact Assignment 1-2
1.2 Electrical Characteristics of the ICC 1-3
1.2.1 Measurement Conventions 1-3

1.2.2 Input/Output (1/0) 1-3
1.2.3 Programming Voltage (VPP) 1-4
1.2.4 Clock (CLK) I-4
1.2.5 Reset (RST) 1-5
1.2.6 Supply Voltage (VCC) 1-5
1.2.7 Contact Resistance 1-5
1.3 Mechanical Characteristics of the Terminal 1-6
1.3.1 Interface Device 1-6
1.3.2 Contact Forces 1-7
1.3.3 Contact Assignment 1-7
1.4 Electrical Characteristics of the Terminal 1-7
1.4.1 Measurement Conventions 1-7
1.4.2 Input/Output (1/O) 1-7
1.4.3 Programming Voltage (VPP) 1-9
1.4.4 Clock (CLK) 1-9
1.4.5 Reset (RST) 1-9
1.4.6 Supply Voltage (VCC) 1-10
1.4.7 Contact Resistance 1-10
1.4.8 Short Circuit Resilience 1-10
1.4.9 Powering and Depowering of Terminal with ICC in Place 1-10
2. Card Session 1-11
2.1 Normal Card Session 1-11
2.1.1 Stages of a Card Session 1-11
2.1.2 ICC Insertion and Contact Activation Sequence 1-11
2.1.3 ICC Reset 1-12
2.1.4 Execution of a Transaction 1-14
2.1.5 Contact Deactivation Sequence 1-14
2.2 Abnormal Termination of Transaction Process 1-15
3. Physical Transportation of Characters 1-16
3.1 Bit Duration 1-16

3.2 Character Frame 1-16

ii Contents May 31, 1998

4. Answer to Reset 1-18
4.1 Physical Transportation of Characters Returned at Answer to Reset 1-18
4.2 Characters Returned by ICC at Answer to Reset 1-18
4.3 Character Definitions 1-20

4.3.1 TS - Initial Character 1-21
4.3.2 TO - Format Character 1-22
4.3.3 TA1 to TC3 - Interface Characters 1-22
4.3.4 TCK - Check Character 1-28
4.4 Terminal Behaviour during Answer to Reset 1-29
4.5 Answer to Reset - Flow at the Terminal 1-30

5. Transmission Protocols 1-31
5.1 Physical Layer 1-31
5.2 Data Link Layer 1-32

5.2.1 Character Frame 1-32
5.2.2 Character Protocol T=0 1-32
5.2.3 Error Detection and Correction for T=0 1-34
5.2.4 Block Protocol T=1 1-35
5.2.5 Error Detection and Correction for T=1 1-42
5.3 Terminal Transport Layer (TTL) 1-44
5.3.1 Transport of APDUs by T=0 1-44
5.3.2 Transportation of APDUs by T=1 1-51
5.4 Application Layer 1-51
5.4.1 C-APDU 1-52
5.4.2 R-APDU 1-53

Part Il - Data Elements and Commands

1. Data Elements and Files -1
1.1 Data Elements Associated with Financial Transaction Interchange -1
1.2 Data Objects -1

1.2.1 Classes of Data Objects -2
1.3 Files -2
1.3.1 File Structure 11-2
1.3.2 File Referencing 11-4
1.4 Rules for Using a Data Object List (DOL) 11-4

2. Commands for Financial Transaction 11-6

2.1 Message Structure 11-6
2.1.1 Command APDU Format 11-6
2.1.2 Response APDU Format -7
2.1.3 Command-Response APDU Conventions 11-8

2.2 Coding Conventions 11-8
2.2.1 Coding of the Class Byte 11-8
2.2.2 Coding of the Instruction Byte 11-8
2.2.3 Coding of Parameter Bytes 11-9
2.2.4 Coding of Data Field Bytes 11-9
2.2.5 Coding of the Status Bytes 11-9
2.2.6 Coding of RFU Data 11-12

2.3 Logical Channels 11-13

2.4 Commands 11-13

2.4.1 APPLICATION BLOCK Command-Response APDUs 11-13

May 31, 1998 Contents iii

2.4.2 APPLICATION UNBLOCK Command-Response APDUs 11-14
2.4.3 CARD BLOCK Command-Response APDUs 11-15
2.4.4 EXTERNAL AUTHENTICATE Command-Response APDUs 11-16
2.4.5 GENERATE APPLICATION CRYPTOGRAM Command-Response
APDUs 1-17
2.4.6 GET DATA Command-Response APDUs 11-20
2.4.7 GET PROCESSING OPTIONS Command-Response APDUs 11-21
2.4.8 INTERNAL AUTHENTICATE Command-Response APDUSs 11-22
2.4.9 PIN CHANGE/UNBLOCK Command-Response APDUSs 11-23
2.4.10 READ RECORD Command-Response APDUs 11-25
2.4.11 SELECT Command-Response APDUs 11-26
2.4.12 VERIFY Command-Response APDUs 11-28
Part 111 - Application Selection
1. Overview of Application Selection 11-1
2. Data in the ICC Used for Application Selection 11-2
2.1 Coding of Payment System Application Identifier 11-2
2.2 Structure of the Payment Systems Environment 11-2
2.3 Coding of a Payment System’s Directory 1iI-3
2.4 Coding of Other Directories 11-5
3. Building the Candidate List 11-5
3.1 Matching Terminal Applications to ICC Applications 11-5
3.2 Using the Payment Systems Directories 11-6
3.3 Using a List of AlIDs 11-9
3.4 Final Selection 11-11

Part IV - Security Aspects

1. Static Data Authentication V-1
1.1 Keys and Certificates V-2
1.2 Retrieval of the Certification Authority Public Key V-5
1.3 Retrieval of the Issuer Public Key V-6
1.4 Verification of the Signed Static Application Data 1v-7

2. Dynamic Data Authentication V-9
2.1 Keys and Certificates 1v-11
2.2 Retrieval of the Certification Authority Public Key 1vV-14
2.3 Retrieval of the Issuer Public Key 1vV-14
2.4 Retrieval of the ICC Public Key 1V-16
2.5 Dynamic Signature Generation 1V-18
2.6 Dynamic Signature Verification 1V-19

3. Secure Messaging 1vV-21
3.1 Secure Messaging Format 1vV-21
3.2 Secure Messaging for Integrity and Authentication 1vV-21

3.2.1 Command Data Field 1v-21
3.2.2 MAC Session Key Derivation 1V-22
3.2.3 MAC Computation 1V-22
3.3 Secure Messaging for Confidentiality 1V-23
3.3.1 Command Data Field 1V-23
3.3.2 Encipherment Session Key Derivation 1V-23

3.3.3 Encipherment/Decipherment 1V-23

iv Contents May 31, 1998
4. Personal Identification Number Encipherment 1Vv-24
4.1 Keys and Certificates 1V-24
4.2 PIN Encipherment and Verification 1V-26
Annexes
Annex A - Examples of Exchanges Using T=0 A-1
Al. Case 1 Command A-1
A2. Case 2 Command A-1
A3. Case 3 Command A-2
A4. Case 4 Command A-2
A5. Case 2 Commands Using the ‘61’ and ‘6C’ Procedure Bytes A-2
A6. Case 4 Command Using the ‘61’ Procedure Byte A-3
A7. Case 4 Command with Warning Condition A-3
Annex B - Data Elements Table B-1
Annex C - Data Objects C-1
C1. Coding of BER-TLV Data Objects C-1
Annex D - Examples of Directory Structures D-1
D1. Examples of Directory Structures D-1
Annex E - Security Mechanisms E-1
E1l. Symmetric Mechanisms E-1
E2. Asymmetric Mechanisms E-4
Annex F - Approved Cryptographic Algorithms F-1
F1. Symmetric Algorithms F-1
F2. Asymmetric Algorithms F-1
F3. Hashing Algorithms F-4

Annex G - Informative References

G-1

May 31, 1998 Contents v
Tables
Table I-1 - ICC Contact Assignment 1-3
Table 1-2 - Electrical Characteristics of 1/0 for ICC Reception 1-4
Table 1-3 - Electrical Characteristics of 1/0O for ICC Transmission 1-4
Table 1-4 - Electrical Characteristics of CLK to ICC 1-4
Table I-5 - Electrical Characteristics of RST to ICC 1-5
Table 1-6 - IFD Contact Assignment -7
Table 1-7 - Electrical Characteristics of 1/0O for Terminal Transmission 1-8
Table 1-8 - Electrical Characteristics of 1/0 for Terminal Reception 1-8
Table 1-9 - Electrical Characteristics of CLK from Terminal 1-9
Table 1-10 - Electrical Characteristics of RST from Terminal 1-9
Table 1-11 - Basic ATR for T=0 Only 1-19
Table 1-12 - Basic ATR for T=1 Only 1-20
Table 1-13 - Basic Response Coding of Character TO 1-22
Table 1-14 - Basic Response Coding of Character TB1 1-24
Table 1-15 - Basic Response Coding of Character TC1 1-25
Table 1-16 - Basic Response Coding of Character TD1 1-25
Table 1-17 - Basic Response Coding of Character TD2 1-27
Table 1-18 - Basic Response Coding of Character TA3 1-27
Table 1-19 - Basic Response Coding of Character TB3 1-28
Table 1-20 - Terminal Response to Procedure Byte 1-33
Table 1-21 - Structure of a Block 1-35
Table 1-22 - Coding of the PCB of an I-block 1-36
Table 1-23 - Coding of the PCB of an R-block 1-37
Table 1-24 - Coding of the PCB of a S-block 1-37
Table 1-25 - Structure of Command Message 1-50
Table 1-26 - GET RESPONSE Error Conditions 1-51
Table 1-27 - Definition of Cases for Data in APDUs 1-52
Table 1-28 - Cases of C-APDUs 1-53
Table I1-1 - Structure of SFI 11-4
Table 11-2 - Command APDU Content -7
Table 11-3 - Response APDU Content -7
Table 11-4 - Data Within an APDU Command-Response Pair 11-8
Table 11-5 - Most Significant Nibble of the Class Byte 11-8
Table 11-6 - Coding of the Instruction Byte 11-9
Table 11-7 - Coding of Status Bytes SW1 SW2 11-10
Table 11-8 - Allocation of Status Bytes 11-11
Table 11-9 - APPLICATION BLOCK Command Message 11-14
Table 11-10 - APPLICATION UNBLOCK Command Message 11-15
Table 11-11 - CARD BLOCK Command Message 11-16
Table 11-12 - EXTERNAL AUTHENTICATE Command Message 11-17
Table 11-13 - GENERATE AC Cryptogram Types 11-18
Table 11-14 - GENERATE AC Command Message 11-18
Table 11-15 - GENERATE AC Reference Control Parameter 11-18
Table 11-16 - Format 1 GENERATE AC Response Message Data Field 11-19
Table 11-17 - Coding of Cryptogram Information Data 11-19
Table 11-18 - GET DATA Command Message 11-20

Vi Contents May 31, 1998

Table 11-19 - GET PROCESSING OPTIONS Command Message 11-21
Table 11-20 - Format 1 GET PROCESSING OPTIONS Response Message
Data Field 11-22
Table 11-21 - INTERNAL AUTHENTICATE Command Message 11-22
Table 11-22 - PIN CHANGE/UNBLOCK Command Message 11-24
Table 11-23 - READ RECORD Command Message 11-25
Table 11-24 - READ RECORD Command Reference Control Parameter 11-25
Table 11-25 - READ RECORD Response Message Data Field 11-25
Table 11-26 - SELECT Command Message 11-26
Table 11-27 - SELECT Command Reference Control Parameter 11-26
Table 11-28 - SELECT Command Options Parameter 11-27
Table 11-29 - SELECT Response Message Data Field (FCI) of the PSE 11-27
Table 11-30 - SELECT Response Message Data Field (FCI) of a DDF 11-27
Table 11-31 - SELECT Response Message Data Field (FCI) of an ADF 11-28
Table 11-32 - VERIFY Command Message 11-29
Table 11-33 - VERIFY Command Qualifier of Reference Data (P2) 11-29
Table 111-1 - PSE Directory Record Format -4
Table 111-2 - DDF Directory Entry Format -4
Table 111-3 - ADF Directory Entry Format -4
Table 111-4 - Format of Application Priority Indicator V-4
Table 1V-1 - Issuer Public Key Data to be Signed by the Certification
Authority V-4
Table 1V-2 - Static Application Data to be Signed by the Issuer V-5
Table 1V-3 - Data Objects Required for Static Data Authentication V-5
Table V-4 - Format of the Data Recovered from the Issuer Public Key
Certificate V-6
Table IV-5 - Format of the Data Recovered from the Signed Static
Application Data V-8
Table 1V-6 - Issuer Public Key Data to be Signed by the Certification
Authority 1V-12
Table IV-7 - 1CC Public Key Data to be Signed by the Issuer 1V-13
Table 1V-8 - Data Objects Required for Public Key Authentication for Dynamic
Authentication 1V-14
Table 1V-9 - Format of the Data Recovered from the Issuer Public Key
Certificate 1V-15
Table 1V-10 - Format of the Data Recovered from the ICC Public Key
Certificate 1Vv-17
Table 1V-11 - Dynamic Application Data to be Signed 1V-19
Table 1V-12 - Additional Data Objects Required for Dynamic Signature
Generation and Verification 1V-19
Table 1V-13 - Format of the Data Recovered from the Signed Dynamic
Application Data 1V-20
Table 1V-14 - ICC PIN Encipherment Public Key Data to be Signed
by the Issuer 1V-25
Table 1V-15 - Data Objects Required for the Retrieval of the ICC PIN
Encipherment Public Key 1V-26
Table 1V-16 - Data to be Enciphered for PIN Encipherment 1v-27
Table B-1 - Data Elements Dictionary B-11

Table B-2 - Data Elements Tags B-15

May 31, 1998 Contents vii

Table C-1 - Tag Field Structure (First Byte) BER-TLV C-1
Table C-2 - Tag Field Structure (Subsequent Bytes) BER-TLV C-2
Table C-3 - Primitive BER-TLV Data Object (Data Element) C-3
Table C-4 - Constructed BER-TLV Data Object C-3

Table F-1 - Mandatory Upper Bound for the Size in Bytes of the Moduli F-1

viii Contents May 31, 1998
Figures

Figure I-2 - Layout of Contacts 1-2
Figure 1-3 - Terminal Contact Location and Dimensions 1-6
Figure 1-4 - Contact Activation Sequence 1-12
Figure I-5 - Cold Reset Sequence 1-13
Figure I-6 - Warm Reset Sequence 1-14
Figure I-7 - Contact Deactivation Sequence 1-15
Figure I-8 - Character Frame 1-17
Figure 1-9 - ATR - Example Flow at the Terminal 1-30
Figure 11-1 - Command APDU Structure 11-6
Figure 11-2 - Response APDU Structure -7
Figure 11-3 - Structural Scheme of Status Bytes 11-10
Figure 111-1- Terminal Logic Using Directories 11-8
Figure 111-2 - Using the List of Applications in the Terminal 111-10
Figure IV-1 - Diagram of Static Data Authentication V-1
Figure 1V-2 - Diagram of Dynamic Data Authentication V-9
Figure IV-3 - Format 1 Command Data Field for Secure Messaging for

Integrity and Authentication 1V-22
Figure IV-4 - Format 2 Command Data Field for Secure Messaging for

Integrity and Authentication 1V-22
Figure IV-5 - Format 1 Enciphered Data Object in a Command Data Field 1V-23
Figure IV-6 - Format 2 Command Data Field for Secure Messaging for

Confidentiality 1V-23
Figure D-1 - Simplest Card Structure Single Application D-1
Figure D-2 - Single Level Directory D-2
Figure D-3 - Third Level Directory D-2

May 31, 1998 ICC Card Specification for Payment Systems iX

1. Scope

The Integrated Circuit Card (ICC) Specification for Payment Systemsdescribes the
minimum functionality required of integrated circuit cards (ICCs) and terminals to
ensure correct operation and interoperability. Additional proprietary functionality
and features may be provided, but these are beyond the scope of this specification
and interoperability cannot be guaranteed.

This specification consists of four parts:

Partl - Electromechanical Characteristics, Logical Interface, and
Transmission Protocols

Part Il - Data Elements and Commands

Part 111 - Application Selection

Part IV - Security Aspects

Part 1 defines electromechanical characteristics, logical interface, and transmission
protocols as they apply to the exchange of information between an ICC and a
terminal. In particular it covers:

» Mechanical characteristics, voltage levels, and signal parameters as they apply to
both ICCs and terminals.

* An overview of the card session.

» Establishment of communication between the ICC and the terminal by means of
the answer to reset.

* Character- and block-oriented asynchronous transmission protocols.

Part 11 defines data elements and commands as they apply to the exchange of
information between an ICC and a terminal. In particular it covers:

» Data elements for financial interchange and their mapping onto data objects.
» Structure and referencing of files.

e Structure and coding of messages between the ICC and the terminal to achieve
application level functions.

Part 111 defines the application selection process from the standpoint of both the
card and the terminal. The logical structure of data and files within the card that is
required for the process is specified, as is the terminal logic using the card structure.

Part IV defines the security aspects of the processes specified in this specification.
In particular it covers:

« Offline static data authentication.

X ICC Card Specification for Payment Systems May 31, 1998

Offline dynamic data authentication.

Offline PIN encipherment

Secure messaging.

This specification does not cover the details of Transaction Certificate generation by
the ICC, the internal implementation in the ICC, its security architecture, and its
personalisation.

This specification is based on the ISO/IEC 7816 series of standards and should be
read in conjunction with those standards. However, if any of the provisions or
definitions in this specification differ from those standards, the provisions herein
shall take precedence.

This specification is intended for a target audience that includes manufacturers of
ICCs and terminals, system designers in payment systems, and financial institution
staff responsible for implementing financial applications in ICCs.

1.1 EMV Specification Version Numbering

To facilitate future reference of the EMV specifications and to differentiate between
technical updates and editorial clarifications, with the publication of this version of
the EMV specifications, EMV has introduced the following version numbering
scheme:

version X.Y.Z,
where:
X indicates the phase number of the specifications
Y indicates technical change(s) from the previous version
Z indicates editorial change(s) from the previous version
Therefore, this version of the EMV specifications is version 3.1.1, since the basis for

this specification is version 3.0 and both technical and editorial changes have been
made.

May 31, 1998

ICC Card Specification for Payment Systems Xi

2. Normative References

The following standards contain provisions that are referenced in this specification.

Europay,
MasterCard, and
Visa (EMV): March
31, 1998

Europay,
MasterCard, and
Visa (EMV): March
31, 1998

FIPS Pub 180-1:1995

IEC 512-2:1979

1SO 639:1988

1SO 3166:1997

1SO 4217:1995
ISO/IEC 7811-1:1995

ISO/IEC 7811-3:1995

ISO/IEC 7813:1995

ISO/IEC DIS 7816-
1:1998

ISO/IEC DIS 7816-
2:1998

ISO/IEC 7816-3:1989

ISO/IEC 7816-3:1992

Integrated Circuit Card Application Specification for Payment
Systems

Integrated Circuit Card Terminal Specification for Payment
Systems

Secure Hash Standard

Specifications for electromechanical components for
electromechanical equipment - Part 2: Contact resistance
tests, insulation tests, and voltage stress tests

Codes for the representation of names and languages
Codes for the representation of names of countries

Codes for the representation of currencies and funds

Identification cards - Recording technique - Part 1: Embossing

Identification cards - Recording technique - Part 3: Location
of embossed characters on ID-1 cards

Identification cards - Financial transaction cards

Identification cards - Integrated circuit(s) cards with contacts
- Part 1: Physical characteristics

Identification cards - Integrated circuit(s) cards with contacts
- Part 2: Dimensions and location of contacts

Identification cards - Integrated circuit(s) cards with contacts
- Part 3: Electronic signals and transmission protocols

Identification cards - Integrated circuit(s) cards with contacts
- Part 3, Amendment 1: Protocol type T=1, asynchronous half
duplex block transmission protocol

Xi ICC Card Specification for Payment Systems May 31, 1998

ISO/IEC 7816-3:1994

ISO/IEC 7816-4:1995

ISO/IEC 7816-5:1994

| ISO/IEC 7816-6:1996

ISO 8731-1:1987

1ISO 8372:1987

ISO/IEC 8825:1990

1ISO 8583:1987

1SO 8583:1993

1ISO 8859:1987

| 1SO/IEC 9796-2:
| 1997

| 1SO/IEC 9797:1994

| 1SO/IEC 10116: 1997

| 1SO/IEC 10118-3:
| 1998

Identification cards - Integrated circuit(s) cards with contacts
- Part 3, Amendment 2: Protocol type selection (Draft
International Standard)

Identification cards - Integrated circuit(s) cards with contacts
- Part 4, Inter-industry commands for interchange

Identification cards - Integrated circuit(s) cards with contacts
- Part 5: Numbering system and registration procedure for
application identifiers

Identification cards - Integrated circuit(s) cards with contacts
- Part 6: Inter-industry data elements (Draft International
Standard)

Banking - Approved algorithms for message authentication -
Part 1: DEA

Information processing - Modes of operation for a 64-bit block
cipher algorithm

Information technology - Open systems interconnection -
Specification of basic encoding rules for abstract syntax
notation one (ASN.1)

Bank card originated messages - Interchange message
specifications - Content for financial transactions

Financial transaction card originated messages - Interchange
message specifications

Information processing - 8-bit single-byte coded graphic
character sets

Information technology - Security techniques - Digital
signature scheme giving message recovery - Part 2:
Mechanism using a hash function

Information technology - Security techniques - Data integrity
mechanism using a cryptographic check function employing a
block cipher algorithm

Information technology - Modes of operation of an n-bit block
cipher algorithm

Information technology - Security techniques - Hash functions
- Part 3: Dedicated hash functions

May 31, 1998 ICC Card Specification for Payment Systems Xiii

ISO/IEC 10373:1993 Identification cards - Test methods

Xiv ICC Card Specification for Payment Systems May 31, 1998

3. Definitions

The following terms are used in this specification.

Application - The application protocol between the card and the terminal and its
related set of data.

Asymmetric Cryptographic Technique - A cryptographic technique that uses
two related transformations, a public transformation (defined by the public key) and
a private transformation (defined by the private key). The two transformation have
the property that, given the public transformation, it is computationally infeasible to
derive the private transformation.

Block - A succession of characters comprising two or three fields defined as prologue
field, information field, and epilogue field.

Byte - 8 bits.
Card - A payment card as defined by a payment system.

Certification Authority - Trusted third party that establishes a proof that links a
public key and other relevant information to its owner.

Ciphertext - Enciphered information.

Cold Reset - The reset of the ICC that occurs when the supply voltage (VCC) and
other signals to the ICC are raised from the inactive state and the reset (RST) signal
is applied.

Command - A message sent by the terminal to the ICC that initiates an action and
solicits a response from the ICC.

Concatenation - Two elements are concatenated by appending the bytes from the
second element to the end of the first. Bytes from each element are represented in
the resulting string in the same sequence in which they were presented to the
terminal by the ICC, that is, most significant byte first. Within each byte bits are
ordered from most significant bit to least significant. A list of elements or objects
may be concatenated by concatenating the first pair to form a new element, using
that as the first element to concatenate with the next in the list, and so on.

Contact - A conducting element ensuring galvanic continuity between integrated
circuit(s) and external interfacing equipment.

Cryptogram - Result of a cryptographic operation.

Cryptographic Algorithm - An algorithm that transforms data in order to hide or
reveal its information content.

May 31, 1998 ICC Card Specification for Payment Systems XV

Data Integrity - The property that data has not been altered or destroyed in an
unauthorised manner

Decipherment - The reversal of a corresponding encipherment

Digital Signature - An asymmetric cryptographic transformation of data that
allows the recipient of the data to prove the origin and integrity of the data, and
protect the sender and the recipient of the data against forgery by third parties, and
the sender against forgery by the recipient.

Embossing - Characters raised in relief from the front surface of a card.

Encipherment - The reversible transformation of data by a cryptographic
algorithm to produce ciphertext.

Epilogue Field - The final field of a block. It contains the error detection code
(EDC) byte(s).

Financial Transaction - The act between a cardholder and a merchant or acquirer
that results in the exchange of goods or services against payment.

Function - A process accomplished by one or more commands and resultant actions
that are used to perform all or part of a transaction.

Guardtime - The minimum time between the trailing edge of the parity bit of a
character and the leading edge of the start bit of the following character sent in the
same direction.

Hash Function - A function that maps strings of bits to fixed-length strings of bits,
satisfying the following two properties:

* Itis computationally infeasible to find for a given output an input which maps to
this output.

* Itis computationally infeasible to find for a given input a second input that maps
to the same output.

Additionally, if the hash function is required to be collision-resistant, it must also
satisfy the following property:

* Itis computationally infeasible to find any two distinct inputs that map to the
same output.

Hash Result - The string of bits that is the output of a hash function.

Inactive - The supply voltage (VCC) and other signals to the ICC are in the inactive
state when they are at a potential of 0.4 V or less with respect to ground (GND).

XVi ICC Card Specification for Payment Systems May 31, 1998

Integrated Circuit(s) - Electronic component(s) designed to perform processing
and/or memory functions.

Integrated Circuit(s) Card - A card into which one or more integrated circuits are
inserted to perform processing and memory functions.

Integrated Circuit Module - The sub-assembly embedded into the ICC
comprising the IC, the IC carrier, bonding wires, and contacts.

Interface Device - That part of a terminal into which the ICC is inserted, including
such mechanical and electrical devices that may be considered part of it.

Key - A sequence of symbols that controls the operation of a cryptographic
transformation.

Magnetic Stripe - The stripe containing magnetically encoded information.

Message - A string of bytes sent by the terminal to the card or vice versa, excluding
transmission-control characters.

Message Authentication Code - A symmetric cryptographic transformation of
data that protects the sender and the recipient of the data against forgery by third
parties.

Nibble - The four most significant or least significant bits of a byte.

Padding - Appending extra bits to either side of a data string.

Path - Concatenation of file identifiers without delimitation.

Payment System - For the purposes of this specification, Europay International
S.A., MasterCard International Incorporated, or Visa International Service
Association.

Payment Systems Environment - The set of logical conditions established within
the ICC when a payment system application conforming to this specification has
been selected, or when a directory definition file (DDF) used for payment system
application purposes has been selected.

Plaintext - Unenciphered information.

Private Key - That key of an entity’s asymmetric key pair that should only be used
by that entity. In the case of a digital signature scheme, the private key defines the

signature function.

Prologue Field - The first field of a block. It contains subfields for node address
(AD), protocol control byte (PCB), and length (LEN).

May 31, 1998 ICC Card Specification for Payment Systems Xvii

Public Key - That key of an entity’'s asymmetric key pair that can be made public.
In the case of a digital signature scheme, the public key defines the verification
function.

Public Key Certificate - The public key information of an entity signed by the
certification authority and thereby rendered unforgeable.

Redundancy - Any information that is known and can be checked.

Response - A message returned by the ICC to the terminal after the processing of a
command message received by the ICC.

Secret Key - A key used with symmetric cryptographic techniques and usable only
by a set of specified entities.

Script - A command or a string of commands transmitted by the issuer to the
terminal for the purpose of being sent serially to the ICC as commands.

Signal Amplitude - The difference between the high and low voltages of a signal.

Signal Perturbations - Any abnormal conditions occurring on a signal such as
undershoot/overshoot, electrical noise, ripple, spikes, crosstalk, etc.

State H - Voltage high on a signal line. May indicate a logic one or logic zero
depending on the logic convention used with the ICC.

State L - Voltage low on a signal line. May indicate a logic one or logic zero
depending on the logic convention used with the ICC.

Symmetric Cryptographic Technique - A cryptographic technique that uses the
same secret key for both the originator’s and recipient’s transformation. Without
knowledge of the secret key, it is computationally infeasible to compute either the
originator’s or the recipient’s transformation.

T=0 - Character-oriented asynchronous half duplex transmission protocol.
T=1 - Block-oriented asynchronous half duplex transmission protocol.

Template - Value field of a constructed data object, defined to give a logical
grouping of data objects.

Terminal - The device used in conjunction with the ICC at the point of transaction
to perform a financial transaction. It incorporates the interface device and may also
include other components and interfaces such as host communications.

Warm Reset - The reset that occurs when the reset (RST) signal is applied to the
ICC while the clock (CLK) and supply voltage (VCC) lines are maintained in their
active state.

Xviii

ICC Card Specification for Payment Systems

May 31, 1998

4. Abbreviations and Notations

The following abbreviations and notations are used in this specification.

AAC
AAR
AC
ACK
ADF
AEF
AFL
AID
an

ans
APDU
ARPC
ARQC
ASN
ATC

ATR

BER
BGT
BWI

BWT

C-APDU

Application Authentication Cryptogram
Application Authorisation Referral
Application Cryptogram
Acknowledgment

Application Definition File
Application Elementary File
Application File Locator
Application lIdentifier
Alphanumeric

Alphanumeric Special

Application Protocol Data Unit
Authorisation Response Cryptogram
Authorisation Request Cryptogram
Abstract Syntax Notation
Application Transaction Counter
Answer to Reset

Binary

Basic Encoding Rules

Block Guardtime

Block Waiting Time Integer

Block Waiting Time

Celsius or Centigrade

Command APDU

May 31, 1998

ICC Card Specification for Payment Systems

XiX

CBC
CDOL
Cin
CLA
CLK
cn
C-TPDU
CVvM
Cwi
CWT
DAD
DC
DDF
DDOL
DES
DF
DIR
DIS
ECB
EDC
EF
etu

FCI

FIPS

Cipher Block Chaining
Card Risk Management Data Object List

Input Capacitance

Class Byte of the Command Message
Clock

Compressed Numeric
Command TPDU

Cardholder Verification Method
Character Waiting Time Integer
Character Waiting Time
Destination Node Address
Direct Current

Directory Definition File
Dynamic Data Authentication Data Object List
Data Encryption Standard
Dedicated File

Directory

Draft International Standard
Electronic Code Book

Error Detection Code
Elementary File

Elementary Time Unit

File Control Information
Frequency

Federal Information Processing Standard

XX ICC Card Specification for Payment Systems May 31, 1998
GND Ground

hex. Hexadecimal

HHMM Hours, Minutes

HHMMSS Hours, Minutes, Seconds

I-block Information Block

IC Integrated Circuit

ICC Integrated Circuit Card

IEC International Electrotechnical Commission
IFD Interface Device

IFS Information Field Size

IFSC Information Field Size for the ICC

IFSD Information Field Size for the Terminal

IFSI Information Field Size Integer

Ly High Level Input Current

I Low Level Input Current

INF Information Field

INS Instruction Byte of Command Message

1/0 Input/Output

lon High Level Output Current

loL Low Level Output Current

1SO International Organisation for Standardisation
Km Master Key

Ks Session Key

kQ Kilohm

Lc Exact Length of Data Sent by the TAL in a Case 3 or 4 Command

May 31, 1998 ICC Card Specification for Payment Systems XXi

Icm Least Common Multiple

Loo Length of the ICC Dynamic Data

Le Maximum Length of Data Expected by the TAL in Response to a Case
2 or 4 Command

Licc Exact Length of Data Available (or Remaining) in the ICC to be
Returned in Response to the Case 2 or 4 Command Received by the
ICC

LEN Length

Lr Length of Response Data Field

LRC Longitudinal Redundancy Check

M Mandatory

pm Micrometre

mA Milliampere

MAC Message Authentication Code

max. Maximum

MF Master File

MHz Megahertz

min. Minimum

mm Millimetre

mQ Milliohm

m/s Meters per Second

HA Microampere

Hs Microsecond

N Newton

n Numeric

NAD Node Address

XXii ICC Card Specification for Payment Systems May 31, 1998

NAK Negative Acknowledgment

nAs Nanoampere-second

Nca Length of the Certification Authority Public Key Modulus
NI Length of the Issuer Public Key Modulus
Nic Length of the ICC Public Key Modulus
Nee Length of the ICC PIN Encipherment Public Key Modulus
ns Nanosecond

0] Optional

P1 Parameter 1

P2 Parameter 2

P3 Parameter 3

PAN Primary Account Number

Pca Certification Authority Public Key

PCB Protocol Control Byte

PDOL Processing Options Data Object List

pF Picofarad

Pi Issuer Public Key

Pic ICC Public Key

PIN Personal Identification Number

PSA Payment System Application

PSE Payment System Environment

PTS Protocol Type Selection

R-APDU Response APDU

R-block Receive Ready Block

RFU Reserved for Future Use

May 31, 1998 ICC Card Specification for Payment Systems Xxiii
RID Registered Application Provider Identifier

RSA Rivest, Shamir, Adleman Algorithm

RST Reset

R-TPDU Response TPDU

SAD Source Node Address

S-block Supervisory Block

Sca Certification Authority Private Key

Si Issuer Private Key

Sic ICC Private Key

SFI Short File Identifier

SHA Secure Hash Algorithm

SW1 Status Word One

SW2 Status Word Two

TAL Terminal Application Layer

TC Transaction Certificate

TCK Check Character

TDOL Transaction Certificate Data Object List

te Fall Time Between 90% and 10% of Signal Amplitude
TLV Tag Length Value

TPDU Transport Protocol Data Unit

[Rise Time Between 10% and 90% of Signal Amplitude
TTL Terminal Transport Layer

TVR Terminal Verification Results

\% Volt

var. Variable

XXV ICC Card Specification for Payment Systems May 31, 1998

Vee Voltage Measured on VCC Contact
VCC Supply Voltage

Vi High Level Input Voltage

VL Low Level Input Voltage

Vou High Level Output Voltage

VoL Low Level Output Voltage

VPP Programming Voltage

Wi Waiting Time Integer

WTX Waiting Time Extension

YYMMDD Year, Month, Day

The following notations apply:

‘0’ to ‘9’ and ‘A’ to ‘F’ 16 hexadecimal digits

Number

[..-] Optional part

A=B A is assigned the value of B

A=B Value of A is equal to the value of B

A=Bmodn Integers A and B are congruent modulo the integer n, that is,

there exists an integer d such that

(A-B)=dn
A mod n The reduction of the integer A modulo the integer n, that is,
the unique integer 0 < r < n for which there exists an integer d
such that
A=dn+r
abs(n) Absolute value of an integer n defined as n if n> 0, and as —-n if

n<o

May 31, 1998 ICC Card Specification for Payment Systems XXV

Y := ALG(K)[X] Encipherment of a 64-bit data block X with a 64-bit block
cipher as specified in Annex E1 using a secret key K

X =ALGYK)[Y] Decipherment of a 64-bit data block Y with a 64-bit block
cipher as specified in Annex E1 using a secret key K

Y := Sign (Sk)[X] The signing of a data block X with an asymmetric reversible
algorithm as specified in Annex E2, using the private key Sk

X = Recover(Px)[Y] The recovery of the data block X with an asymmetric reversible
algorithm as specified in Annex E2, using the public key Pk

C=(A1]l]B) The concatenation of an n-bit number A and an m-bit number
B, which is defined as C = 2™ A + B.

H := Hash[MSG] Hashing of a message MSG of arbitrary length using an 80-bit
hash function

Icm(a, b) Least common multiple of two integers a and b

Inj Length of an integer n in bits

X] n) The Jacobi symbol of an integer X with respect to an integer

n = pg consisting of the product of two primes p and g, and
which is defined as follows. Define

J ;= (XC-D2mod p)(X@D’2 mod q)

IfJ=1lorJ=(pq-p—q+1),then (X On):=1.
Otherwise, (X On) :=-1.

Note that the Jacobi symbol can efficiently be computed
without the prime factors of n (for example, see Informative
Reference [5] in Annex G).

XX Any value

XXVi ICC Card Specification for Payment Systems May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

Part |

Electromechanical Characteristics,
Logical Interface, and Transmission
Protocols

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -1

1. Electromechanical Interface

This section covers the electrical and mechanical characteristics of the ICC and the
terminal. ICC and terminal specifications differ to allow a safety margin to prevent
damage to the ICC.

The ICC characteristics defined herein are based on the ISO/IEC 7816 series of
standards with some small variations.

1.1 Mechanical Characteristics of the ICC

This section describes the physical characteristics, contact assignment, and
mechanical strength of the ICC.

1.1.1 Physical Characteristics

Except as otherwise specified herein, the ICC shall comply with the physical
characteristics for ICCs as defined in ISO/IEC DIS 7816-1. The ICC shall also
comply with the additional characteristics defined in ISO/IEC DIS 7816-1 as related
to ultra-violet light, X-rays, surface profile of the contacts, mechanical strength,
electromagnetic characteristics, and static electricity and shall continue to function
correctly electrically under the conditions defined therein.

1.1.1.1 Module Height

The highest point on the IC module surface shall not be greater than 0.05mm above
the plane of the card surface.

The lowest point on the 1C module surface shall not be greater than 0.10mm below
the plane of the card surface.

1.1.2 Dimensions and Location of Contacts

| The dimensions and location of the contacts shall be as shown in Figure I-1:

-2 Part | - Electromechanical Characteristics and Protocols May 31, 1998

-

Upper Edge

x x x x

5 € 525 8 <5 5 <
£ El g E¢gEgegtE
M M N~ N A | W0 W0
Nl o~ ¥ ¢ Of ©f 1
O O] H| M | ©| ©V|
| ON| N| O N | N| N

v
v
C7l
o) c8
S | 2.65 max.
% 12.85 min . .
= 117.27 max All dimensions
20.47 min in milimetres

Figure I-1 - ICC Contact Location and Dimensions

| It is recommended that the metallised contact areas be larger than the minimum
| specified wherever possible.

The layout of the contacts relative to embossing and/or magnetic stripe shall be as
shown in Figure 1-2:

r A

Magnetic
Stripe
(Back of Card)

= Mandatory
Contacts

o Optional J
Contacts

my §]|
OomOm

Embossing
Area

Front of Card

Figure I-2 - Layout of Contacts

1.1.3 Contact Assignment

The assignment of the ICC contacts shall be as defined in ISO/IEC DIS 7816-2 and
is shown in Table I-1:

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -3

C1 Supply voltage (VCC) C5 Ground (GND)
C2 Reset (RST) C6 Not used?
C3 Clock (CLK) C7 Input/output (1/0)

Table I-1 - ICC Contact Assignment

C4 and C8 are not used and need not be physically present. C6 is not used and need
not be physically present; if present, it shall be electrically isolatec? from the
integrated circuit (IC) itself and other contacts on the ICC.

1.2 Electrical Characteristics of the ICC

This section describes the electrical characteristics of the signals as measured at the
ICC contacts.

1.2.1 Measurement Conventions

All measurements are made at the point of contact between the ICC and the
interface device (IFD) contacts and are defined with respect to the GND contact over
an ambient temperature range 0° C to 50° C.

All currents flowing into the ICC are considered positive.

Note: The temperature range limits are dictated primarily by the thermal characteristics of
polyvinyl chloride (that is used for the majority of cards that are embossed) rather than by
constraints imposed by the characteristics of the IC.

1.2.2 Input/Output (I/O)

This contact is used as an input (reception mode) to receive data from the terminal
or as an output (transmission mode) to transmit data to the terminal. During
operation, the ICC and the terminal shall not both be in transmit mode. In the
event that this condition occurs, the state (voltage level) of the 1/O contact is
indeterminate and no damage shall occur to the ICC.

1.2.2.1 Reception Mode

When in reception mode, and with the supply voltage (VCC) in the range specified in
section 1-1.2.6, the ICC shall correctly interpret signals from the terminal having the
characteristics shown in Table I-2:

1 Defined in ISO/IEC 7816 as programming voltage (VPP).
2 Electrically isolated means that the resistance measured between C6 and any other contact shall be
>10MQ with an applied voltage of 5V DC.

Table I-2 - Electrical Characteristics of I/O for ICC Reception

Vee +03 V.

1.2.2.2 Transmission Mode

-4 Part | - Electromechanical Characteristics and Protocols May 31, 1998
Symbol Minimum | Maximum | Unit
VL 0 0.8 \Y/
t; and to - 1.0 Us

| Note: The ICC shall not be damaged by signal perturbations on the 1/O line in the range -0.3 V to

When in transmission mode, the ICC shall send data to the terminal with the
characteristics shown in Table 1-3:

Symbol Conditions Minimum | Maximum | Unit
Vou —20 A <15y <0, Ve =min. | 0.7 X Ve Ve \%
VoL 0<lg. <1mA, V= min. 0 0.4 \%

trandtz | Cyy (terminal) = 30 pF max. - 1.0 Us

Table I-3 - Electrical Characteristics of I/0 for ICC Transmission

Unless transmitting, the ICC shall set its 1/O line driver to reception mode. There is
no requirement for the ICC to have any current source capability from 1/0.

1.2.3 Programming Voltage (VPP)
The ICC shall not require VPP (see note in section 1-1.3.3).
1.2.4 Clock (CLK)

With VCC in the range specified in section 1-1.2.6, the I1CC shall operate correctly
with a CLK signal having the characteristics shown in Table 1-4:

Symbol Conditions Minimum Maximum Unit
Vg Ve — 0.7 Ve \%
VL 0 0.5 \%

t; and to Ve = min. to max. - 9% of clock

period

Table I-4 - Electrical Characteristics of CLK to ICC

| Note: The ICC shall not be damaged by signal perturbations on the CLK line in the range —0.3 V to
Voo +0.3 V.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -5

The ICC shall operate correctly with a CLK duty cycle of between 44% and 56% of
the period during stable operation.

The ICC shall operate correctly with a CLK frequency in the range 1 MHz to 5 MHz.

Note: Frequency shall be maintained by the terminal to within + 1% of that used during the answer
to reset throughout the card session.

1.2.5 Reset (RST)

With VCC in the range specified in section 1-1.2.6, the 1CC shall correctly interpret a
RST signal having the characteristics shown in Table I-5:

Symbol Conditions Minimum | Maximum | Unit
Viy Vee— 0.7 Ve \%
VL 0 0.6 \%

t; and to Ve = min. to max. - 1.0 us

Table I-5 - Electrical Characteristics of RST to ICC

Note: The ICC shall not be damaged by signal perturbations on the RST line in the range —0.3 V to
Vee +0.3 V.

The ICC shall answer to reset asynchronously using active low reset.
1.2.6 Supply Voltage (VCC)

The ICC shall operate correctly with a supply voltage V- 0of 5V £ 0.5V DC and

have a maximum current requirement of 50 mA when operating at any frequency
within the range specified in section 1-1.2.4.

Note: It is strongly recommended that the current consumption of ICCs is maintained at as low a
value as possible, since the maximum current consumption allowable for the ICC may be reduced in
future versions of this specification. Issuers of ICCs bearing multisector applications should ensure
that the IC used has a current requirement compatible with all terminals (from all sectors) in which
the ICC might be used.

1.2.7 Contact Resistance
The contact resistance as measured across a pair of clean ICC and clean nominal

IFD contacts shall be less than 500 mQ throughout the design life of an ICC (see
ISO/IEC 10373 for test method).

Note: A nominal IFD contact may be taken as a minimum of 1.25 pum of gold over 5.00 um of nickel.

-6 Part | - Electromechanical Characteristics and Protocols May 31, 1998

1.3 Mechanical Characteristics of the Terminal

This section describes the mechanical characteristics of the terminal interface
device.

1.3.1 Interface Device

The IFD into which the ICC is inserted shall be capable of accepting ICCs having
the following characteristics:

* Physical characteristics compliant with ISO/IEC DIS 7816-1

» Contacts on the front, in the position compliant with Figure 2 of ISO/IEC DIS
7816-2

* Embossing compliant with ISO/IEC 7811-1 and 3
The IFD contacts shall be located such that if an ICC having contacts with the

dimensions and locations specified in Figure 1-3 is inserted into the IFD, correct
connection of all contacts shall be made.

Upper Edge
o N~ —_ Yo
N ™ ™ @
(o)) — < O
— N N N
o
lcq -
5 7
B cg
E) All dimensions
in milimetres
1025 All contacts

1.7mm x 2.0mm
17.87

Figure I-3 - Terminal Contact Location and Dimensions

Location guides and clamps (if used) shall cause no damage to ICCs, particularly in
the areas of the magnetic stripe, signature panel, embossing, and hologram.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -7

Note: As a general principle, an ICC should be accessible to the cardholder at all times. Where the
ICC is drawn into the IFD, a mechanism should exist to return the ICC to the cardholder in the event
of a failure (for example, loss of power).

1.3.2 Contact Forces

The force exerted by any one IFD contact on the corresponding ICC contact shall be
in the range 0.2 N to 0.6 N.

1.3.3 Contact Assignment

The assignment of the IFD contacts shall be as shown in Table I-6:

C1 VCC C5 GND
C2 RST C6 Not used?
C3 CLK C7 1/0

Table I-6 - IFD Contact Assignment

C4 and C8 are not used and need not be physically present. C6 shall be electrically
isolated”.

Note: If connected in existing terminals, C6 shall be maintained at a potential between GND and

1.05 x V¢ throughout the card session. Keeping C6 isolated in new terminals facilitates its use for
other purposes if so defined in future versions of this specification.

1.4 Electrical Characteristics of the Terminal

This section describes the electrical characteristics of the signals as measured at the
IFD contacts.

1.4.1 Measurement Conventions

All measurements are made at the point of contact between the ICC and the IFD
contacts and are defined with respect to GND contact over an ambient temperature
range 0° C to 50° C.

All currents flowing out of the terminal are considered positive.

1.4.2 Input/Output (I/O)

This contact is used as an output (transmission mode) to transmit data to the ICC or

as an input (reception mode) to receive data from the ICC. During operation, the
terminal and the ICC shall not both be in transmit mode. In the event that this

3 Defined in ISO/IEC 7816 as programming voltage (VPP).
4 Electrically isolated means that the resistance measured between C6 and any other contact shall be
>10MQ with an applied voltage of 5V DC.

-8 Part | - Electromechanical Characteristics and Protocols May 31, 1998

condition occurs, the state (voltage level) of the contact is indeterminate and no
damage shall occur to the terminal.

When both the terminal and the ICC are in reception mode, the contact shall be in
the high state. To achieve this, the terminal shall incorporate a pull-up resistor to
VCC, or other device. The terminal shall not pull 1/0 high unless VCC is powered
and stable within the tolerances specified in section 1-1.4.6. See the contact
activation sequence specified in section 1-2.1.2.

The terminal shall limit the current flowing into or out of the 1/O contact to +15 mA
at all times.

1.4.2.1 Transmission Mode

When in transmission mode, the terminal shall send data to the ICC with the
characteristics shown in Table I-7:

Symbol Conditions Minimum | Maximum Unit

Vou 0<lgy <20 pA, Ve = 0.8 X V¢ Vee \
min.

VoL -05mA<Ig <0,V = 0 0.4 \%
min.

tz and t. Cingcey = 30 pF max. - 0.8 VB

Signal Signal low -0.25 0.4 \Y/

perturbations
Signal high 0.8X Ve | Ve +0.25 \%

Table I-7 - Electrical Characteristics of I/O for Terminal Transmission
Unless transmitting, the terminal shall set its 1/O line driver to reception mode.

1.4.2.2 Reception Mode

When in reception mode, the terminal shall correctly interpret signals from the ICC
having the characteristics shown in Table I-8:

Table I-8 - Electrical Characteristics of I/O for Terminal Reception

Symbol Minimum | Maximum | Unit
Viy 0.6 X Ve Ve \%
VL 0 0.5 \%

t; and to - 1.2 us

May 31, 1998

Part | - Electromechanical Characteristics and Protocols

1.4.3 Programming Voltage (VPP)

The terminal shall not generate a VPP (see section 1-1.3.3).

1.4.4 Clock (CLK)

The terminal shall generate a CLK signal having the characteristics shown in Table

1-9:
Symbol Conditions Minimum Maximum Unit
tz and t. Cinacc) = 30 pF max. - 8% of clock
period
Signal Signal low -0.25 0.4 \Y/
perturbations

Table I-9 - Electrical Characteristics of CLK from Terminal

Duty cycle shall be between 45% and 55% of the period during stable operation.

Frequency shall be in the range 1 MHz to 5 MHz and shall not change by more than
+ 1% throughout a card session (see section 1-2).

1.4.5 Reset (RST)

The terminal shall generate a RST signal having the characteristics shown in Table

1-10:

Symbol Conditions Minimum Maximum Unit
Vou 0 <lgy <50 pA, Ve = min. Vee - 0.5 Ve \%
VoL -50 pPA < 1o <0, Ve = min. 0 0.4 \%
Trand tp Cingcey = 30 pF max. - 0.8 VB
Signal Signal low -0.25 0.4 \Y/
perturbations
Signal high Vee—05 | Ve +0.25 \%

Table I-10 - Electrical Characteristics of RST from Terminal

I-10 Part | - Electromechanical Characteristics and Protocols May 31, 1998

1.4.6 Supply Voltage (VCC)

The terminal shall generate a V- of 5V + 0.4 V DC and shall be capable of

delivering steady state output current in the range 0 to 55 mA whilst maintaining
Vce within these tolerances. The terminal shall contain protection circuitry to
prevent damage occurring to it in the event of fault conditions such as a short circuit
to GND or VCC. This supply shall be protected from transients and surges caused
by internal operation of the terminal and from external interference introduced via
power leads, communications links, etc. V. shall never be negative with respect to

ground.

During normal operation of an ICC, current pulses cause voltage transients on VCC
as measured at the ICC contacts. The power supply shall be able to counteract
transients in the current consumption of the ICC up to a maximum charge of 40 nAs
with no more than 400 ns duration and a maximum amplitude of 100 mA, ensuring
that V. remains within the range specified.

Note: Terminals may be designed to be capable of delivering more than 55 mA if required, but it is
recommended that terminals limit the steady state current that can be delivered to a maximum of
200 mA.

1.4.7 Contact Resistance

The contact resistance as measured across a pair of clean IFD and clean nominal
ICC contacts shall be less than 500 mQ throughout the design life of a terminal (see
ISO/IEC DIS 7816-1 for test method).

Note: A nominal ICC contact may be taken as 1.25 um of gold over 5.00 pm of nickel.

1.4.8 Short Circuit Resilience

The terminal shall be capable of sustaining a short circuit of any duration between
any or all contacts without suffering damage or malfunction, for example, if a metal
plate or an ICC with a metallic surface is inserted.

1.4.9 Powering and Depowering of Terminal with ICC in Place

If the terminal is powered on or off with an ICC in place no spurious signals or
power perturbations shall appear at the interface contacts. Contact activation and
deactivation sequences and timings, as described in sections 1-2.1.2 and 1-2.1.5
respectively shall be respected.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -11

2. Card Session

This section describes all stages involved in a card session from insertion of the ICC
into the IFD through the execution of the transaction to the removal of the ICC from
the IFD.

2.1 Normal Card Session

This section describes the processes involved in the execution of a normal
transaction.

2.1.1 Stages of a Card Session
A card session is comprised of the following stages:
1. Insertion of the ICC into the IFD and connection and activation of the contacts.

2. Reset of the ICC and establishment of communication between the terminal and
the ICC.

3. Execution of the transaction(s).
4. Deactivation of the contacts and removal of the ICC.
2.1.2 ICC Insertion and Contact Activation Sequence

On insertion of the ICC into the IFD, the terminal shall ensure that all signal
contacts are in state L with values of VoL as defined in section 1-1.4 and that Vcc is
0.4 V or less before any contacts are physically made. The IFD shall be able to
detect when the ICC is seated to within £0.5 mm of the nominally correct position®
in the direction of insertion/withdrawal. When the IFD detects that the ICC is
seated within this tolerance, and when all contacts have been physically made, the
contacts shall be activated as follows (see Figure 1-4):

* RST shall be maintained by the terminal in state L throughout the activation
sequence.

* Following establishment of the physical contacts but prior to activation of 1/0 or
CLK, VCC shall be powered.

* Following verification by the terminal that Vcc is stable and within the limits
defined in section 1-1.4.6, the terminal shall set its 1/O line driver to reception
mode and shall provide CLK with a suitable and stable clock as defined in section
1-1.4.4. The 1/O line driver in the terminal may be set to reception mode prior to

5 The ‘nominally correct position’ is when the centres of the IFD contacts are exactly over the centres
of the ICC contacts located as specified in ISO/IEC DIS 7816-2.

-12 Part | - Electromechanical Characteristics and Protocols May 31, 1998

application of the clock but shall be set to reception mode no later than 200 clock
cycles after application of the clock.
Note: The terminal may verify the state of Vcc by measurement, by waiting sufficient time for it to
stabilise according to the design of the terminal, or otherwise. The state of the 1/O line after the

terminal has set its /O line driver to reception mode is dependent upon the state of the 1/O line
driver in the ICC (see section 1-2.1.3.1).

ax /I
I/O Q Indsternirete ‘

' P —
Cadinsated | 2000/des

Figure I-4 - Contact Activation Sequence
2.1.3 ICC Reset

The ICC shall answer to reset asynchronously using active low reset.

The means of transportation of the answer to reset (ATR) are described in section I-
3 and its contents are described in sections 1-4.2 and 1-4.3.

2.1.3.1 Cold Reset

Following activation of the contacts according to section 1-2.1.2, the terminal shall
initiate a cold reset and obtain an ATR from the ICC as follows (see Figure 1-5):

* The terminal shall apply CLK at a notional time TO.

* Within a maximum of 200 clock cycles following TO, the ICC shall set its 1/O line
driver to reception mode. Since the terminal shall also have set its 1/O line
driver to reception mode within this period, the 1/O line is guaranteed to be in
state H no later than 200 clock cycles following time TO.

* The terminal shall maintain RST in state L through time TO and for a period of
between 40,000 and 45,000 clock cycles following time TO to time T1, when it
shall set RST to state H.

e The answer to reset on 1/0 from the ICC shall begin between 400 and 40,000
clock cycles after time T1 (time tl in Figure I-5).

e If the answer to reset from the ICC does not begin within this time, the terminal
shall initiate the deactivation sequence described in section 1-2.1.5 (hereafter
referred to as the ‘deactivation sequence’) within 50 ms.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -13

vee |

s S A RRTRRRERER A ARRRRRRRRRRRRRRUARRAMRRNYNYRRSRRMNY:
/10 ‘ "Iﬂamfﬂe ‘ e tl% Ansier to Reset

TO : T1

Figure I-5 - Cold Reset Sequence

2.1.3.2 Warm Reset

If the ATR received following a cold reset as described in section 1-2.1.3.1 does not
conform to the specification in section I-4, the terminal shall initiate a warm reset
and obtain an ATR from the ICC as follows (see Figure 1-6):

A warm reset shall start at a notional time TO’, at which time the terminal shall
set RST to state L.

The terminal shall maintain VCC and CLK stable and within the limits defined
in sections 1-1.4.4 and 1-1.4.6 throughout the warm reset sequence.

Within a maximum of 200 clock cycles following TO’, the ICC and terminal shall
set their 1/O line drivers to reception mode. The 1/O line therefore is guaranteed
to be in state H no later than 200 clock cycles following time TO'.

The terminal shall maintain RST in state L from time TO’ for a period of between
40,000 and 45,000 clock cycles following time TO’ to time T1’, when it shall set
RST to state H.

The answer to reset on 1/0O from the ICC shall begin between 400 and 40,000
clock cycles after time T1' (time t1’ in Figure 1-6).

If the answer to reset from the ICC does not begin within this time, the terminal
shall initiate the deactivation sequence within 50 ms.

I-14 Part | - Electromechanical Characteristics and Protocols May 31, 1998

=X [AR RRRRRRRRRERTOW
/0 Irmamrae ‘ etl'% Ansner toReset ‘

Figure 1-6 - Warm Reset Sequence

2.1.4 Execution of a Transaction

Selection of the application in the ICC and the subsequent exchange of information
between the ICC and the terminal necessary to perform a transaction are described
in Part 111 of this specification, and in the ICC Application Specification for Payment
Systems.

2.1.5 Contact Deactivation Sequence

As the final step in the card session, upon normal or abnormal termination of the
transaction (including withdrawal of the ICC from the IFD during a card session),
the terminal shall deactivate the IFD contacts as follows (see Figure 1-7):

* The terminal shall initiate the deactivation sequence by setting RST to state L.

* Following the setting of RST to state L but prior to depowering VCC, the terminal
shall set CLK and 1/O to state L.

* Following the setting of RST, CLK, and I/O to state L but prior to galvanic
disconnection of the IFD contacts, the terminal shall depower VCC. V. shall be

0.4 V or less prior to galvanic disconnection of the IFD contacts.

| « The deactivation sequence shall be completed within 100 ms. This period is
measured from the time that RST is set to state L to the time that V. reaches

0.4 V or less.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols I-15

VCC

RST

e i

/O |maamrae ‘J

Cardrenoved
here

Figure I-7 - Contact Deactivation Sequence

2.2 Abnormal Termination of Transaction Process

If an ICC is prematurely removed from a terminal during execution of a transaction
at speeds of up to 1 m/s, the terminal shall be capable of sensing the movement of
the ICC relative to the IFD contacts, and of deactivating all IFD contacts in the
manner described in section 1-2.1.5 before the relative movement exceeds 1 mm. No
electrical or mechanical damage shall be caused to the ICC under these conditions.

Note: For ‘sliding carriage’ type IFDs, it may be possible for the terminal to sense the movement of
the ICC/IFD contact sub-assembly relative to the main body of the IFD. In this event, it is not
mandatory to be able to sense the movement of the ICC relative to the IFD contacts, but deactivation
of the contacts shall be complete before any electrical contact is broken between the ICC and IFD.

I-16 Part | - Electromechanical Characteristics and Protocols May 31, 1998

3. Physical Transportation of Characters

During the transaction process, data is passed bidirectionally between the terminal
and the ICC over the 1/O line in an asynchronous half duplex manner. A clock
signal is provided to the ICC by the terminal, and this shall be used to control the
timing of this exchange. The mechanism of exchanging bits and characters is
described below. It applies during the answer to reset and is also used by both
transmission protocols as described in section 1-5.

3.1 Bit Duration

The bit duration used on the 1/O line is defined as an elementary time unit (etu). A
linear relationship exists between the etu on the 1/O line and CLK frequency (f).

During the answer to reset, the bit duration is known as the initial etu, and is given
by the following equation:

initial etu :3:—2 seconds, where fis in Hertz

Following the answer to reset (and establishment of the global parameters F and D,
see section 1-4), the bit duration is known as the current etu, and is given by the
following equation:

F L.
current etu = E seconds, where f is in Hertz

Note: For the basic answer(s) to reset described in this specification, only values of F = 372 and

372
D =1 are supported. Thus the initial and current etus are the same and are given by ——. In the
f

following sections of this specification where etu is referred to, it is current etu that is meant unless
otherwise specified.

Throughout the card session, f shall be in the range 1 MHz to 5 MHz.

3.2 Character Frame

Data is passed over the 1/O line in a character frame as described below. The
convention used is specified in the initial character (TS) transmitted by the ICC in
the ATR (see section 1-4.3.1).

Prior to transmission of a character, the 1/O line shall be in state H.

A character consists of 10 consecutive bits (see Figure 1-8):

e 1 start bit in state L

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -17

» 8 bits, which comprise the data byte
* 1 even parity checking bit

The start bit is detected by the receiving end by periodically sampling the 1/O line.
The sampling time shall be less than or equal to 0.2 etu.

The number of logic ones in a character shall be even. The 8 bits of data and the
parity bit itself are included in this check but not the start bit.

The time origin is fixed as midway between the last observation of state H and the
first observation of state L. The existence of a start bit shall be verified within

0.7 etu. Subsequent bits shall be received at intervals of (n + 0.5 £ 0.2) etu (n being
the rank of the bit). The start bit is bit 1.

Within a character, the time from the leading edge of the start bit to the trailing
edge of the nth bitis (n £ 0.2) etu.

The interval between the leading edges of the start bits of two consecutive
characters is comprised of the character duration (10 + 0.2) etu, plus a guardtime.
Under error free transmission, during the guardtime both the ICC and the terminal
shall be in reception mode (/O line in state H). For T=0 only, if the ICC or terminal
as receiver detects a parity error in a character just received, it shall set 1/O to state
L to indicate the error to the sender (see section 1-5.2.3)

Start Parity Start

l(— 8 data bits %\l/ l
H — —

/1O Guardtime _‘
L

10+ 0.2 etu
< Character Duration >

Figure 1-8 - Character Frame

At the terminal transport layer (TTL), data shall always be passed over the 1/O line
most significant (m.s.) byte first. The order of bits within a byte (that is, whether
the least significant (l.s.) or m.s. bit is transferred first) is specified in character TS
returned in the answer to reset (see section 1-4.3).

1-18 Part | - Electromechanical Characteristics and Protocols May 31, 1998

4. Answer to Reset

After being reset by the terminal as described in section 1-2.1.3, the ICC answers
with a string of bytes known as the ATR. These bytes convey information to the
terminal that defines certain characteristics of the communication to be established
between the ICC and the terminal. The method of transporting these bytes, and
their meaning, is described below.

Note: In sections I-4 and I-5, the m.s. bit of a character refers to bit b8 and the l.s. bit refers to bit
bl. A value in inverted commas is coded in hexadecimal notation, for example, ‘3F'.

4.1 Physical Transportation of Characters Returned at
Answer to Reset

This section describes the structure and timing of the characters returned at the
answer to reset.

The bit duration is defined in section 1-3.1, and the character frame is defined in
section 1-3.2.

During the answer to reset, the minimum interval between the leading edges of the
start bits of two consecutive characters shall be 12 initial etus, and the maximum
interval between the leading edges of the start bits of two consecutive characters
shall be 9600 initial etus.

The ICC shall transmit all the characters to be returned during an answer to reset
(warm or cold) within 19,200 initial etus®. This time is measured between the
leading edge of the start bit of the first character (TS) and 12 initial etus after the
leading edge of the start bit of the last character.

4.2 Characters Returned by ICC at Answer to Reset

The number and coding of the characters returned by the ICC at the answer to reset
varies depending upon the transmission protocol(s) and the values of the
transmission control parameters supported. This section describes two basic
answers to reset, one for ICCs supporting T=0 only and the other for ICCs
supporting T=1 only. It defines the characters to be returned and the allowable
ranges of values for the transmission control parameters. 1CCs returning one of the
two answers to reset described here are assured correct operation and
interoperability in terminals conforming to this specification.

For proprietary reasons ICCs may optionally support more than one transmission
protocol, but one of the supported protocols shall be T=0 or T=1. The first offered
protocol shall be T=0 or T=1, and the terminal shall continue the card session using

6 The maximum time allowed for the answer to reset varies according to clock frequency, since the
period represented by an etu is frequency dependent (see section 3.1).

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-19

the first offered protocol unless for proprietary reasons it supports a mechanism for
selecting an alternative protocol offered by the ICC. Support for such a mechanism
is not required by, and is beyond the scope of these specifications.

Note: This specification does not support ICCs having both T=0 and T=1 protocols present at the
same time. This can only be achieved by proprietary means beyond the scope of this specification.

Also for proprietary reasons ICCs may optionally support other values of the
transmission control parameters at the issuer’s discretion. However, such support is
considered outside the scope of this specification and such ICCs may be rejected at
terminals conforming to this specification, which need not have the corresponding
additional proprietary functionality required to support the ICC.

The characters returned by the ICC at the answer to reset for the two basic answers
to reset are shown in Tables 1-11 and I-12. The characters are shown in the order in
which they are sent by the ICC, that is, TS first.

If protocol type T=0 only is supported (character-oriented asynchronous
transmission protocol), the characters returned shall be as shown in Table I-11:

Character Value Remarks

TS ‘3B’ or ‘3F Indicates direct or inverse convention

TO ‘6Xx’ TB1 and TC1 present; x indicates the number of
historical bytes present

TB1 ‘00’ VPP not required

TC1 ‘00’ to ‘FF Indicates the amount of extra guardtime required.
Value ‘FF’ has a special meaning (see section I-
4.3.3.3)

Table I-11 - Basic ATR for T=0 Only

1-20 Part | - Electromechanical Characteristics and Protocols May 31, 1998

If protocol type T=1 only is supported (block-oriented asynchronous transmission
protocol), the characters returned shall be as shown in Table 1-12:

Character Value Remarks
TS ‘3B’ or ‘3F’ Indicates direct or inverse convention
TO ‘Ex’ TB1 to TD1 present; x indicates the number of
historical bytes present
TB1 ‘00’ VPP not required
TC1 ‘00’ to ‘FF Indicates amount of extra guardtime required.
Value ‘FF’ has special meaning - see section I-
4.3.3.3
TD1 ‘81’ TAZ2 to TC2 absent; TD2 present; T=1 to be used
TD?2 ‘31 TA3 and TB3 present; TC3 and TD3 absent; T=1
to be used
TA3 ‘10’ to ‘FE’ Returns IFSI, which indicates initial value for
information field size for the ICC and IFSC of 16-
254 bytes
TB3 m.s. nibble ‘0’ to ‘4;’ | BWI=0to 4
l.s. nibble'0'to'5’ |CWI=0to5
TCK See section 1-4.3.4 | Check character

Table I-12 - Basic ATR for T=1 Only

4.3 Character Definitions

This section provides detailed descriptions of the characters that may be returned at
the answer to reset. The presence or absence of a character, and the allowable
range of values it may take (if present) if it is to conform to one of the basic ATRs is
indicated by ‘basic response’ in the description of each character. The description of
a basic response (even though indicated by ‘shall’) is not intended to preclude the use
of other values of the characters, nor the omission/inclusion of a character at the
issuer’s discretion. For example, the ICC may return additional characters if it
supports more than one transmission protocol (see section I-5). However, only ICCs
returning a basic ATR, or an ATR supported by the minimum required terminal
functionality described below, are guaranteed to be supported correctly in
interchange.

Terminals conforming to this specification are only required (as a minimum) to
support the basic ATRs described here together with any additional requirements
specified in ‘terminal behaviour’. Terminals may thus reject an ATR not supported
by this required functionality. However, terminals may, in addition, be capable of
correctly interpreting an ATR that does not conform to this specification but that is
returned by an ICC for proprietary (for example, national) use. Such terminal
functionality is not mandatory and is beyond the scope of this specification. As a
general principle, a terminal should accept a non basic ATR if it is able to function
correctly with the ATR that was returned.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -21

The maximum number of characters returned in the answer to reset (including the
historical bytes but not including TS) shall be 32.

Terminals shall be capable of checking the parity of characters returned in the
answer to reset, but not necessarily as they are received.

In the following character descriptions, if it is indicated that a terminal shall:

* reject an ATR, it means that the terminal shall issue a warm reset if it is
rejecting a cold ATR, or terminate the card session by deactivating the ICC
contacts if it rejecting a warm ATR

* reject an ICC, it means that the terminal shall terminate the card session by
deactivating the ICC contacts

e accept an ATR, it means that the terminal shall accept the ATR, but only if the
requirements specified in this section for all other characters are also met.

Each character description is structured in the following way:

o title
» explanation of usage as described in ISO/IEC 7816-3

« EMV basic response. This response should always be used in a warm ATR to
ensure interoperability

* required terminal behaviour in the event that a terminal receives characters
outside the range allowed by EMV

4.3.1 TS - Initial Character

TS performs two functions. It provides a known bit pattern to the terminal to
facilitate bit synchronisation, and it indicates the logic convention to be used for the
interpretation of the subsequent characters.

Using inverse logic convention, a low state L on the 1/O line is equivalent to a logic
one, and the m.s. bit of the data byte is the first bit sent after the start bit. Using
direct logic convention, a high state H on the 1/O line is equivalent to a logic one,
and the |.s. bit of the data byte is the first bit sent after the start bit. The first four
bits LHHL are used for bit synchronisation.

Basic responses: The ICC shall return an ATR containing TS having one of two
values:

* (H)LHHLLLLLLH - inverse convention, value ‘3F’

* (H)LHHLHHHLLH - direct convention, value ‘3B’

|-22 Part | - Electromechanical Characteristics and Protocols May 31, 1998

Terminal behaviour: The terminal shall be capable of supporting both inverse and
direct convention and shall accept an ATR containing TS having a value of either
‘3B’ or ‘3F’. An ICC returning an ATR containing TS having any other value shall
be rejected.

Note: It is strongly recommended that a value of ‘3B’ is returned by the ICC since a value of ‘3F’ may
not be supported in future versions of this specification.

4.3.2 TO - Format Character

TO is comprised of two parts. The m.s. nibble (b5-b8) is used to indicate whether the
subsequent characters TAl to TD1 are present. Bits b5-b8 are set to the logic one
state to indicate the presence of TAL to TD1, respectively. The L.s. nibble (b1-b4)
indicates the number of optional historical bytes present (0 to 15). (See Table 1-13
for the basic response coding of character T0.)

Basic responses: The ATR shall contain TO = ‘6x’ if T=0 only is to be used, indicating
that characters TB1 and TC1 are present. The ATR shall contain TO = ‘Ex’ if T=1
only is to be used, indicating that characters TB1 to TD1 are present. The value of
‘X’ represents the number of optional historical bytes to be returned.

Terminal behaviour: The terminal shall accept an ATR containing TO of any value
provided that the value returned correctly indicates and is consistent with the
interface characters TA1 to TD1 and historical bytes actually returned

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
T=O0only| O 1 1 0 X X X X
T=1lonly| 1 1 1 0 X X X X

Table I-13 - Basic Response Coding of Character TO
4.3.3 TA1lto TC3 - Interface Characters

TA1 to TC3 convey information that shall be used during exchanges between the
terminal and the ICC subsequent to the answer to reset. They indicate the values of
the transmission control parameters F, D, I, P, and N, and the IFSC, block waiting
time integer (BWI), and character waiting time integer (CWI) applicable to T=1 as
defined in ISO/IEC 7816-3. The information contained in TA1, TB1, TC1, TA2, and
TB2 shall apply to all subsequent exchanges irrespective of the protocol type to be
used.

4.3.3.1 TAl1l
TA1 conveys the values of FI and DI where:
* Fl is used to determine the value of F, the clock rate conversion factor, which may

be used to modify the frequency of the clock provided by the terminal subsequent
to the answer to reset

May 31, 1998 Part | - Electromechanical Characteristics and Protocols I-23

* DI is used to determine the value of D, the bit rate adjustment factor, which may
be used to adjust the bit duration used subsequent to the answer to reset

See section 1-3.1 for calculation of the bit duration subsequent to the answer to reset
(current etu).

Default values of FI =1 and DI = 1 indicating values of F =372 and D =1,
respectively, shall be used during the answer to reset.

Basic response: The ATR shall not contain TA1 and thus the default values of
F =372 and D = 1 shall continue be used during all subsequent exchanges.

Terminal behaviour: If TAL is present in the ATR (indicated by b5 of TO set to ‘1)
and TA2 is returned with b5 = ‘0’ (specific mode, parameters defined by the interface
bytes), the terminal shall:

e Accept the ATR if the value of TAL is ‘'11’, and immediately implement the
values of F and D indicated.

* Reject the ATR if the value of TAl is not ‘11’, unless it is able to support and
immediately implement the conditions indicated. Support for values of TAL
other than ‘11’ is not required by this specification.

If TAL is present in the ATR (indicated by b5 of TO set to ‘1) and TA2 is not
returned (negotiable mode), the terminal shall only accept the ATR if TA1 ='11" and
shall continue using the default values of D = 1 and F = 372 during all subsequent
exchanges.

If TAL is absent from the ATR, the default values of D = 1 and F = 372 shall be used
during all subsequent exchanges.

Note: It is strongly recommended that new terminals shall be capable of correctly interpreting the
I.s. nibble of TAL if it is returned (that codes the bit rate adjustment factor D), and of correctly
implementing values of D of 1, 2, or 4. Future versions of this specification may support other values
of D to improve data transfer rates between the TTL and ICC and a protocol type selection (PTS)
mechanism for selecting the value to be used.

4.3.3.2 TB1
TB1 conveys the values of P11 and Il where:

* PI1 is specified in bits bl to b5 and is used to determine the value of the
programming voltage P required by the ICC. PI1 =0 indicates that VPP is not
connected in the ICC.

» 1l is specified in bits b6 and b7 and is used to determine the maximum
programming current | required by the ICC. This parameter is not used if P11 =
0.

|-24 Part | - Electromechanical Characteristics and Protocols May 31, 1998

« Bit 8 is not used and shall be set to logic zero.

| Basic response: The ATR shall contain TB1 ='00’, indicating that VPP is not
connected in the ICC.

| Terminal behaviour: In response to a cold reset, the terminal shall accept only an

| ATR containing TB1 ='00". In response to a warm reset the terminal shall accept an
| ATR containing TB1 of any value (provided that b6 of TO is set to 1) or not

| containing TB1 (provided that b6 of TO is set to 0) and shall continue the card

‘ session as though TB1 = ‘00" had been returned. Vp, shall never be generated.

Note: Existing terminals may maintain Vee in the idle state (see section 1-1.3.3).

The basic response coding of character TB1 is shown in Table 1-14:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
0 0 0 0 0 0 0 0

Table I-14 - Basic Response Coding of Character TB1
4.3.3.3 TC1

TC1 conveys the value of N, where N is used to indicate the extra guardtime that
shall be added to the minimum duration between the leading edges of the start bits
of two consecutive characters for subsequent exchanges from the terminal to the
ICC. N is binary coded over bits b1-b8 of TC1, and its value represents the number
of etus to be added as extra guardtime. It may take any value between 0 and 255.
N = 255 has a special meaning and indicates that the minimum delay between the
start leading edges of two consecutive characters shall be reduced to 12 etus if T=0
is to be used, or 11 etus if T=1 is to be used.

Note: TC1 applies only to the timing between two consecutive characters sent from the terminal to
the ICC. It does not apply to the timing between consecutive characters sent from the ICC to the
terminal, nor does it apply to the timing between two characters sent in opposite directions. See

sections 1-5.2.2.1 and 1-5.2.4.2.2.

If the value of TC1 is in the range ‘00’ to ‘FE’, between 0 and 254 etus of extra
guardtime shall be added to the minimum character to character duration, which for
subsequent transmissions shall be between 12 and 266 etus.

If the value of TC1 = ‘FF' the minimum character to character duration for
subsequent transmissions shall be 12 etus if T=0 is to be used, or 11 etus if T=1 is to
be used.

| Basic response: The ATR shall contain TC1 having a value in the range ‘00’ to ‘FF'.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-25

Terminal behaviour: The terminal shall accept an ATR not containing TC1
(provided that b7 of TO is set to 0), but if it accepts such an ATR it shall continue the
card session as though TC1 = ‘00’ had been returned.

The basic response coding of character TC1 is shown in Table 1-15:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
X X X X X X X X

Table I-15 - Basic Response Coding of Character TC1

Note: It is strongly recommended that the value of TC1 be set to the minimum acceptable for the
ICC. Large values of TC1 lead to very slow communication between the terminal and the ICC, and
thus lengthy transaction times.

4.3.3.4 TD1

TD1 indicates whether any further interface bytes are to be transmitted and
information concerning the protocol type(s) where:

e The m.s. nibble is used to indicate whether the characters TA2 to TD2 are
present. These bits (b5-b8) are set to the logic one state to indicate the presence
of TA2 to TD2 respectively.

* The l.s. nibble provides information concerning the protocol type(s) to be used for
subsequent exchanges.

Basic responses: The ATR shall not contain TD1 if T=0 only is to be used, and
protocol type T=0 shall be used as a default for all subsequent transmissions. The
ATR shall contain TD1 =81’ if T=1 only is to be used, indicating that TD2 is present
and that protocol type T=1 shall be used for all subsequent transmissions.

Terminal behaviour: The terminal shall accept an ATR containing TD1 with the
m.s. nibble having any value (provided that the value returned correctly indicates
and is consistent with the interface characters TA2 to TD2 actually returned), and
the I.s. nibble having a value of ‘0’ or ‘1'. The terminal shall reject an ATR
containing other values of TD1.

The basic response coding of character TD1 is shown in Table 1-16:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
T=1] 1 0 0 0 0 0 0 1

Table I-16 - Basic Response Coding of Character TD1

1-26 Part | - Electromechanical Characteristics and Protocols May 31, 1998

4.3.3.5 TA2

The presence or absence of TA2 indicates whether the ICC is operating in specific
mode or negotiable mode respectively.

Basic response: The ATR shall not contain TA2; the absence of TA2 indicates the
negotiable mode of operation.

Terminal behaviour: The terminal shall accept an ATR containing TA2 provided
that b5 = 0, and that it is able to support the exact conditions indicated by the
interface parameters returned by the ICC in the answer to reset and immediately
uses those conditions. Otherwise, the terminal shall reject an ATR containing TAZ2.

4.3.3.6 TB2

TB2 conveys P12 that is used to determine the value of programming voltage P
required by the ICC. When present it overrides the value indicated by PI1 returned
in TB1.

Basic response: The ATR shall not contain TB2.
Terminal behaviour: The terminal shall reject an ATR containing TB2.

Note: Existing terminals may maintain Vee in the idle state (see section 1-1.3.3).
4.3.3.7 TC2

TC2 is specific to protocol type T=0 and conveys the work waiting time integer (WI)
that is used to determine the maximum interval between the start leading edge of
any character sent by the ICC and the start leading edge of the previous character
sent either by the ICC or the terminal (the work waiting time). The work waiting
time is given by 960 x D x WI.

Basic response: The ATR shall not contain TC2 and a default value of WI =10 shall
be used during subsequent communication.

Terminal behaviour: The terminal shall accept an ATR containing TC2 = '0A’". It
shall reject an ATR containing TC2 ='00", or TC2 > '0A’. It shall reject an ATR
containing TC2 having a value in the range ‘01’ to ‘09’ unless it is able to support it.

4.3.3.8 TD2

TD2 indicates whether any further interface bytes are to be transmitted and the
protocol type to be used for subsequent transmissions, where:

* The m.s. nibble is used to indicate whether the characters TA3 to TD3 are
present. These bits (b5-b8) are set to the logic one state to indicate the presence
of TA3 to TD3, respectively.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-27

* The l.s. nibble indicates the protocol type to be used for subsequent exchanges. It
shall take the value ‘1" as T=1 is to be used.

Basic responses: The ATR shall not contain TD2 if T=0 is to be used, and the

protocol type T=0 shall be used as a default for all subsequent transmissions. The
ATR shall contain TD2 = ‘31" if T=1 is to be used, indicating that TA3 and TB3 are
present and that protocol type T=1 shall be used for all subsequent transmissions.

Terminal behaviour: The terminal shall accept an ATR containing TD2 with the
m.s. nibble having any value (provided that the value returned correctly indicates
and is consistent with the interface characters TA3 to TD3 actually returned), and
the I.s. nibble having a value of ‘1’ (or ‘E’ if the |.s. nibble of TD1 is ‘0’). The terminal
shall reject an ATR containing other values of TD2.

The basic response coding of character TD2 is shown in Table 1-17:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
T=1 0 0 1 1 0 0 0 1

Table I-17 - Basic Response Coding of Character TD2
4.3.3.9 TA3

TA3 (if T=1 is indicated in TD2) returns the information field size integer for the
ICC (IFSI), which determines the IFSC, and specifies the maximum length of the
information field (INF) of blocks that can be received by the card. It represents the
length of IFSC in bytes and may take any value between ‘01’ and ‘FE’. Values of ‘00’
and ‘FF’ are reserved for future use.

Basic response: The ATR shall contain TA3 having a value in the range ‘10’ to ‘FE’ if
T=1 is to be used indicating an initial IFSC in the range 16 to 254 bytes.

Terminal behaviour: The terminal shall accept an ATR not containing TA3
(provided that b5 of TD2 is set to 0), but if it accepts such an ATR it shall continue
the card session using a value of ‘20’ for TA3. The terminal shall reject an ATR
containing TA3 having a value in the range ‘00’ to ‘OF’ or a value of ‘FF'.

The basic response coding of character TA3 is shown in Table 1-18:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl

T=1 X X X X X X X X
‘00’ to ‘OF’ and ‘FF’ not allowed

Table I-18 - Basic Response Coding of Character TA3

1-28 Part | - Electromechanical Characteristics and Protocols May 31, 1998

4.3.3.10 TB3

TB3 (if T=1is indicated in TD2) indicates the values of the CWI and the BWI used
to compute the CWT and BWT respectively. TB3 is comprised of two parts. The l.s.
nibble (b1-b4) is used to indicate the value of CWI, whilst the m.s. nibble (b5-b8) is
used to indicate the value of BWI.

Basic response: The ATR shall contain TB3 having the |.s. nibble in the range ‘0’ to
‘5", and the m.s. nibble in the range ‘0’ to ‘4’ if T=1 is to be used, indicating values of
0 to 5 for CWI and O to 4 for BWI.

The basic response coding of character TB3 is shown in Table 1-19:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl
T=1 0 X X X 0 y y y
Xxx is in the range 000 to 100
yyy is in the range 000 to 101

Table I-19 - Basic Response Coding of Character TB3

Terminal behaviour: The terminal shall reject an ATR not containing TB3, or
containing a TB3 indicating BWI greater than 4 and/or CWI greater than 5, or
having a value such that 2°W! < (N + 1). It shall accept an ATR containing a TB3
having any other value.

Note: N is the extra guardtime indicated in TC1. If TC1=255, the value of N shall be taken as -1.

4.3.3.11 TC3

TC3 (if T=1 is indicated in TD2) indicates the type of block error detection code to be
used. The type of code to be used is indicated in b1, and b2 to b8 are not used.

Basic response: The ATR shall not contain TC3, thus indicating longitudinal
redundancy check (LRC) as the error code to be used.

Terminal behaviour: The terminal shall accept an ATR containing TC3 ='00". It
shall reject an ATR containing TC3 having any other value.

4.3.4 TCK - Check Character

TCK has a value that allows the integrity of the data sent in the ATR to be checked.
The value of TCK is such that the exclusive-OR’ing of all bytes from TO to TCK
inclusive is null.

Basic responses: The ATR shall not contain TCK if T=0 only is to be used. In all
other cases TCK shall be returned in the ATR.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-29

Terminal behaviour: The terminal shall accept an ICC returning an ATR not
containing TCK if T=0 only is indicated. In all other cases, the terminal shall reject
an ICC returning an ATR not containing TCK or containing an incorrect TCK, and
shall be able to evaluate TCK when appropriately returned. If TCK is incorrect, the
terminal shall initiate the deactivation sequence within 4,800 initial etus following
the leading edge of the start bit of TCK. For either protocol, the terminal may
continue the card session as soon as the last character indicated by the bit map
characters TO and/or TDi has been received. The terminal shall wait at least the
guardtime applicable to the protocol to be used (16 etus for T=0, BGT for T=1) before
transmitting.

Note: If TCK is not returned, bullet 3 of section 1-4.4 applies.

4.4 Terminal Behaviour during Answer to Reset

Following activation of the ICC contacts as described in section 1-2.1.2 the terminal
shall initiate a cold reset as described in section 1-2.1.3.1. Subsequently the
following shall apply:

* If the terminal rejects a cold ATR as described in section 1-4.3, it shall not
immediately abort the card session but shall initiate a warm reset within 4,800
initial etus (reaction time) measured from the leading edge of the start bit of the
last received character of the cold ATR to the time that RST is set low.

* If the terminal rejects a warm ATR as described in section 1-4.3, it shall initiate
the deactivation sequence within 4,800 initial etus measured from the leading
edge of the start bit of the last received character of the warm ATR.

* If during the answer to either a cold reset or warm reset the time between two
consecutive characters exceeds 9,600 initial etus as defined in section 1-4.1, the
terminal shall abort the card session by initiating the deactivation sequence
within 14,400 initial etus (4,800 + 9,600 initial etus) following the leading edge
of the start bit of the last received character.

* If the answer to a cold or warm reset is not complete within 19,200 initial etus as
defined in section 1-4.1, the terminal shall abort the card session by initiating the
deactivation sequence within 24,000 initial etus (4,800 + 19,200 initial etus)
following the leading edge of the start bit of the TS character.

« If the terminal detects a parity error in a character returned during ATR, it shall
abort the card session by initiating the deactivation sequence within 4,800 initial
etus measured from the leading edge of the start bit of the last received
character of the ATR.

e Upon receipt of a valid cold or warm reset complying with the timings described
above, the terminal shall proceed with the card session using the returned
parameters.

1-30 Part | - Electromechanical Characteristics and Protocols May 31, 1998

4.5 Answer to Reset - Flow at the Terminal

Figure I-9 illustrates an example of the process of an ICC returning an ATR to the
terminal and the checks performed by the terminal to ensure conformance to section
1-4.

Note 1: 'Case’ is a process variable used to indicate whether a cold or
START warm reset is operative. Case = 1 for a cold reset, and Case = 2 for a
warm reset.

Note 2: If the process aborts at this point, the ICC may be acceptable in
this terminal by business agreement. The terminal should be primed to

accept the ICC prior to insertion. Any subsequent processing is
proprietary and beyond the scope of this specification.
SetCase =1
(See Note 1) Note 3: If the process aborts at this point, reset may be retried after
removing the ICC from the terminal and taking corrective action as
required. An appropriate message should be displayed on the terminal.
\ Note 4: A proprietary card session beyond the scope of this
specification may be started at this point.
Cold Reset
< Warm Reset < Set Case =2
Yes
Y
Is ATR Yes Is ATR No
check 1 OK? check 2 OK?
ATR check 1 is ATR check 2 is OK if
OK if parity and the parameters and
TCK (if returned) structure of the ATR
are correct, and conform to the
No the timings requirements of No
specified in section 4
section 4.4 are Yes OR
respected .)
ABORT a propr_let:;ry ATRis ABORT
(See Note 3) recognise (See Note 2)

Continue using
parameters
determined above

OR
(See Note 4)

Figure 1-9 - ATR - Example Flow at the Terminal

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -31

5. Transmission Protocols

This section defines the structure and processing of commands initiated by the
terminal for transmission control and for specific control in asynchronous half
duplex transmission protocols.

Two types of protocol are defined, character protocol (T=0) and block protocol (T=1).
ICCs shall support either protocol T=0 or protocol T=1. Terminals shall support
both protocol T=0 and T=1. The protocol to be used for subsequent communication
between the ICC and terminal is indicated in TD1, and shall be T=0 or T=1. If TD1
is absent in the ATR, T=0 is assumed. The protocol indicated by the ICC applies
immediately after the answer to reset, as there is no PTS procedure. Other
parameters provided in the ATR and relevant to a specific protocol are defined in the
respective parts of this section.

The protocols are defined according to the following layering model:

* Physical layer, which describes the exchanges of bits and is common to both
protocols.

» Data link layer, which includes the following sub-definitions:

— Character frame, defining the exchanges of characters common to both
protocols.

— Character protocol T=0, defining the exchange of characters specific to
T=0.

— Error detection and correction specific to T=0.

— Block protocol T=1, defining the exchanges of blocks specific to T=1.

Error detection and correction specific to T=1.

» Transport layer, which defines the transmission of application-oriented messages
specific to each protocol.

» Application layer, which defines the exchange of messages according to an
application protocol that is common to both transmission protocols.

5.1 Physical Layer

Both protocols T=0 and T=1 use the physical layer and character frame as defined in
section I-3.

1-32 Part | - Electromechanical Characteristics and Protocols May 31, 1998

5.2 Data Link Layer

This section describes the timing, specific options, and error handling for protocols
T=0and T=1.

5.2.1 Character Frame

The character frame as defined in section 1-3.2 applies to all messages exchanged
between the ICC and the terminal.

5.2.2 Character Protocol T=0
5.2.2.1 Specific Options - Character Timing for T=0

The minimum interval between the leading edges of the start bits of two consecutive
characters sent by the terminal to the ICC shall be between 12 and 266 etus as
indicated by the value of TC1 returned at the answer to reset (see sections 1-4.2 and
1-4.3).

The minimum interval between the leading edges of the start bits of two consecutive
characters sent by the ICC to the terminal shall be 12 etus

The maximum interval between the start leading edge of any character sent by the
ICC and the start leading edge of the previous character sent either by the ICC or
the terminal (the Work Waiting Time) shall not exceed 960 x D x WI etus. (D and
WI are returned in TA1 and TC2 ,respectively.) If the Work Waiting Time is
exceeded, the terminal shall initiate the deactivation sequence within 960 etus.

The minimum interval between the leading edges of the start bits of two consecutive
characters sent in opposite directions shall be 16 etus.

Note: The minimum interval between the leading edges of the start bits of two consecutive
characters sent by the terminal to the ICC is always governed by the value of TC1, and may be less
than the minimum interval of 16 etus allowed between two characters sent in opposite directions.

5.2.2.2 Command Header

A command is always initiated by the terminal application layer (TAL) which sends
an instruction via the TTL to the ICC in the form of a five byte header called the
command header. The command header is comprised of five consecutive bytes, CLA,
INS, P1, P2, and P3, where:

* CLA is the command class.

+ |INS is the instruction code.

* P1 and P2 contain additional instruction specific parameters.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols I-33

* P3indicates either the length of data to be sent with the command to the ICC, or
the maximum length of data expected in the response from the ICC, depending on
the coding of INS.

These bytes together with any data to be sent with the command constitute the
command transport protocol data unit (C-TPDU) for T=0. The mapping of the
command application protocol data unit (C-APDU) onto the C-TPDU is described in
section 1-5.3.

The TTL transmits the five-byte header to the ICC and waits for a procedure byte.

5.2.2.3 Command Processing

Following reception of a command header by the ICC, the ICC shall return a
procedure byte or status bytes SW1 SW2 (hereafter referred to as ‘status’) to the
TTL. Both the TTL and ICC shall know implicitly at any point during exchange of
commands and data between the TTL and the ICC what the direction of data flow is
and whether it is the TTL or the ICC that is driving the 1/O line.

5.2.2.3.1 Procedure Byte

The procedure byte indicates to the TTL what action it shall take next. The coding
of the byte and the action that shall be taken by the TTL is shown in Table 1-20.

Procedure Byte Value Action

Equal to INS byte All remaining data bytes shall be transferred by
the TTL, or the TTL shall be ready to receive all
remaining data bytes from the ICC

Equal to complement of The next data byte shall be transferred by the

INS byte (INS) TTL, or the TTL shall be ready to receive the
next data byte from the ICC

‘60’ The TTL shall provide additional work waiting
time as defined in this section

‘61’ The TTL shall wait for a second procedure byte

then send a GET RESPONSE command header
to the ICC with a maximum length of ‘xx’, where
‘xx’ Is the value of the second procedure byte

‘6C’ The TTL shall wait for a second procedure byte
then immediately resend the previous command
header to the ICC using a length of ‘xx’, where
‘xx’ Is the value of the second procedure byte

Table 1-20 - Terminal Response to Procedure Byte

In all cases, after the action has taken place the TTL shall wait for a further
procedure byte or status.

1-34 Part | - Electromechanical Characteristics and Protocols May 31, 1998

5.2.2.3.2 Status Bytes

The status bytes indicate to the TTL that command processing by the ICC is
complete. The meaning of the status bytes is related to the command being
processed and is defined in Part Il of these specifications.

First Status Byte Value Action

‘6x’ or ‘9x’ (except ‘60’, ‘61’ TTL shall wait for a further status byte (status
and ‘6C") - status byte SW1 byte SW2)

Table I-21 - Status Byte Coding

Following receipt of the second status byte, the TTL shall return the status bytes
(together with any appropriate data - see section 1-5.3.1) to the TAL in the response
APDU (R-APDU) and await a further C-APDU.

5.2.2.3.3 Error Handling

When awaiting a procedure byte or status byte, if the byte returned by the ICC has
a value other than specified in sections 1-5.2.2.3.1 and 1-5.2.2.3.2, the terminal shall
initiate the deactivation sequence within 9,600 etus following the leading edge of the
start bit of the (invalid) byte received.

5.2.2.4 Transportation of C-APDUs

A C-APDU containing only command data to be sent to the ICC, or only expecting
data in response from the ICC (cases 2 and 3 in section 1-5.4), is mapped without
change onto a T=0 C-TPDU. A C-APDU that contains and expects no data, or a
C-APDU that requires data transmission to and from the ICC (cases 1 and 4 in
section 1-5.4) is translated according to the rules defined in section 1-5.3 for
transportation by a C-TPDU for T=0.

5.2.3 Error Detection and Correction for T=0
This procedure is mandatory for T=0 but does not apply during the answer to reset.

If a character is not received correctly or is received correctly but with incorrect
parity, the receiver shall indicate an error by setting the 1/0O line to state L at time
(10.5 £ 0.2) etus following the leading edge of the start bit of the character for a
minimum of 1 etu and a maximum of 2 etus.

The transmitter shall test the 1/0O line (11 + 0.2) etus after the leading edge of the
start bit of a character was sent, and assumes that the character was correctly
received if the 1/O line is in state H.

If the transmitter detects an error, it shall repeat the disputed character after a
delay of at least 2 etus following detection of the error. The transmitter shall repeat
the same disputed character a maximum of three more times.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-35

If the last repetition is unsuccessful, the terminal shall initiate the deactivation
sequence within 960 etus following reception of the leading edge of the start bit of
the invalid character (if it is the receiver), or within 960 etus following detection of
the signaling of the parity error by the ICC (if it is the transmitter).

5.2.4 Block Protocol T=1

The protocol consists of blocks transmitted between the TAL and the ICC to convey
command and R-APDUSs and transmission control information (for example,
acknowledgment).

The data link layer block frame structure, specific options of the protocol, and
protocol operations (including error handling) are defined below.

5.2.4.1 Block Frame Structure

The character frame as defined in section 1-3.2 applies.
The block is structured as follows (see Table 1-22):

e Mandatory prologue field

* Optional information field

* Mandatory epilogue field

Prologue Field Information Field | Epilogue Field
Node Protocol Length APDU or Control Error
Address Control Byte (LEN) Information (INF) Detection
(NAD) (PCB) Code (EDC)
1 byte 1 byte 1 byte 0-254 bytes 1 byte

Table I-22 - Structure of a Block

5.2.4.1.1 Prologue Field

The prologue field consists of three mandatory bytes:

* Node address to identify source and intended destination of the block and to
provide VPP state control

» Protocol control byte to control data transmission

e Length of the optional information field

1-36 Part | - Electromechanical Characteristics and Protocols May 31, 1998

5.2.4.1.1.1 Node Address

Bits b1-b3 of NAD indicate the source node address (SAD) of the block, whilst bits
b5 -b7 indicate the intended destination node address (DAD) of the block. Bits
b4 and b8” are unused and shall be set to 0.

These specifications do not support node addressing. All blocks transmitted by
either the terminal or ICC in support of EMV defined applications shall have the
NAD byte set to ‘00'.

If during the card session the terminal or ICC receives a block with a NAD # ‘00’ it
may treat the block as invalid. In this event, it shall apply the error detection and
correction techniques described in section 1-5.2.5.

Note: Support for node addressing is not required by this specification and interoperability can only
be guaranteed if the requirements of this section are met. However, terminals and ICCs may for
proprietary reasons support node addressing. An ICC that optionally supports node addressing
should work correctly with terminals/applications compliant with these specifications. A terminal
that optionally supports node addressing must set NAD = ‘00’ when working with ICCs/applications
compliant with these specifications.

5.2.4.1.1.2 Protocol Control Byte

The PCB codes the type of block. There are three types of blocks defined as follows:
* Information block (I-block) used to convey APDUSs.

* Receive-ready block (R-block) used to convey acknowledgments (ACK or NAK).
* Supervisory block (S-block) used to exchange control information.

The coding of the PCB depends on its type and is defined in Tables 1-23 to 1-25.

b8 0
b7 Sequence number
b6 Chaining (more data)
b5-b1l | Reserved for future use (RFU)

Table 1-23 - Coding of the PCB of an I-block

7 Defined in ISO/IEC 7816 as VPP control. A value of 0 indicates that VPP shall be maintained in the
idle state.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-37

b8 1
b7 0
b6 0

b5 Sequence number
b4-bl | O = Error free
1 = EDC and/or parity error
2 = Other error(s)
Other values RFU

Table I-24 - Coding of the PCB of an R-block

b8 1

b7 1

b6 0 = Request

1 = Response

b5-bl | 0 = Resynchronisation request

1 = Information field size request
2 = Abort request

3 = Extension of BWT request

4 = VPP error8

Other values RFU

Table I-25 - Coding of the PCB of a S-block
5.2.4.1.1.3 Length

The LEN codes the length of the INF part of the block; it may range from 0 to 254
depending on the type of block.

Note: This specification does not support I-blocks with LEN = 0.

5.2.4.1.2 Information Field

The INF is conditional. When present in an I-block, it conveys application data.
When present in a S-block, it conveys control information. An R-block shall not
contain an INF.

5.2.4.1.3 Epilogue Field

The Epilogue Field contains the EDC of the transmitted block. A block is invalid
when a parity error and/or an EDC error occurs. This specification only supports the
LRC as EDC. The LRC is one byte in length and is calculated as the exclusive-OR of
all the bytes starting with the NAD and including the last byte of INF, if present.

Note: TCi (i > 2), which indicates the type of error detection code to be used, is not returned by the
ICC in the ATR. The normal default of the LRC is thus used for the EDC.

8 Not used by ICCs and terminals conforming to this specification.

1-38 Part | - Electromechanical Characteristics and Protocols May 31, 1998

5.2.4.1.4 Block Numbering

I-blocks are numbered using a modulo-2 number coded on one bit. The numbering
system is maintained independently at the ICC and the terminal as senders. The
value of the number starts with zero for the first I-block sent after the answer to
reset by a sender and is incremented by one after sending each I-block. The number
is reset to zero by the sender after resynchronisation.

R-blocks are numbered using a modulo-2 number coded on one bit. A R-block may
be used to acknowledge a chained I-block or to request retransmission of an invalid
block, and always carries the sequence number of the next I-block its sender expects
to receive.

A S-block carries no number.
5.2.4.2 Specific Options

This section defines the information field sizes and timings to be used with protocol
type T=1.

5.2.4.2.1 Information Field Sizes

The IFSC is the maximum length of the information field of blocks that can be
received by the ICC, and is defined as follows. At the answer to reset the IFSI is
returned by the ICC in TA3 indicating the size of the IFSC that can be
accommodated by the ICC. IFSI may take values in the range ‘10’ to ‘FE’ that code
values for IFSC in the range 16 to 254 bytes. The maximum block size that can be
received by the ICC is therefore (IFSC + 3 + 1) bytes including the prologue and
epilogue fields. The size established during the answer to reset shall be used
throughout the rest of the card session or until a new value is negotiated by the ICC
by sending a S(IFS request) block to the terminal.

The information field size for the terminal (IFSD) is the maximum length of the
information field of blocks that can be received by the terminal. The initial size
immediately following the answer to reset shall be 254 bytes, and this size shall be
used throughout the rest of the card session. The first block sent by the terminal
following the answer to reset shall be an S(IFS request) with IFSD = 254.

5.2.4.2.2 Timing for T=1

The minimum interval between the leading edges of the start bits of two consecutive
characters sent by the terminal to the ICC shall be between 11 and 266 etus as
indicated by the value of TC1 returned at the answer to reset (see sections 1-4.2 and
1-4.3).

The minimum interval between the leading edges of the start bits of two consecutive
characters sent by the ICC to the terminal shall be 11 etus

May 31, 1998 Part | - Electromechanical Characteristics and Protocols -39

The maximum interval between the leading edges of the start bits of two
consecutive characters in the same block (the CWT shall not exceed (2! + 11) etus.
The CWI shall have a value of O to 5 as described in section 1-4.3.3.6, and thus CWT
lies in the range 12 to 43 etus.

The maximum interval between the leading edge of the start bit of the last
character that gave the right to send to the ICC and the leading edge of the start bit
of the first character sent by the ICC (the BWT) shall not exceed

{(2BW' x 960) + 11} etus. The BWI shall have a value in the range 0 to 4 as described
in section 1-4.3.3.6, and thus BWT lies in the range 971 to 15,371 etus.

The minimum interval between the leading edges of the start bits of two consecutive
characters sent in opposite directions (the block guard time, BGT) shall be 22 etus.

Note: In general, for values of FI and DI other than 1, BWT is calculated using the formula:

O
BWT = %B‘N' x 960 x 372D ﬁ+ 110etu
F 0

5.2.4.3 Error Free Operation
The protocol rules for error free operation are as follows:

» The first block transmitted after the answer to reset shall be sent by the
terminal to the ICC and shall be a S-block.

| * If the terminal wishes to change the size of the IFSD it shall send a S(IFS
request) block to the ICC. The PCB of the S(IFS request) block shall have the
value ‘C1’ indicating a request to change the IFSD. The INF field shall contain a
byte the value of which indicates the size in bytes of the requested new IFSD.
The ICC shall return a S(IFS response) block to the terminal acknowledging the
change to the size of the IFSD. The PCB of the S(IFS response) block sent in
response shall have the value ‘E1’, and the INF field shall have the same value
as the INF field of the block requesting the change.

Note: Terminals complying with this specification shall set IFSD to 254 in the first block sent
following the answer to reset, and should not send any further S(IFS request) blocks during the
card session.

« If the ICC wishes to change the size of the IFSC from the initial value indicated
at the answer to reset, it shall send a S(IFS request) block to the terminal. The
PCB of the S(IFS request) block shall have the value ‘C1’ indicating a request to
change the IFSC. The INF field shall contain a byte the value of which indicates
the size in bytes of the requested new IFSC. This byte shall have a value in the
range ‘10’ to ‘FE’. The terminal shall return a S(IFS response) block to the ICC
acknowledging the change to the size of the IFSC. The PCB of the S(IFS
response block sent in response shall have the value ‘E1’, and the INF field shall
have the same value as the INF field of the block requesting the change.

1-40 Part | - Electromechanical Characteristics and Protocols May 31, 1998

« The SAD and DAD in the first block transmitted by the terminal shall be set to
zero indicating that node addressing is not to be used.

Note: If for proprietary reasons the terminal supports node addressing, the SAD and DAD in
the first block transmitted by the terminal should be set to the values to be used throughout the
rest of the card session.

* During the card session, only blocks as defined in this section shall be
exchanged. The half duplex block protocol consists of transmitting blocks
alternately by the terminal and the ICC. When the sender has transmitted a
complete block, the sender switches to the receiving state.

* When the receiver has received the number of characters in accordance with the
value of LEN and the EDC, the receiver gains the right to send.

e The ICC shall acknowledge an I-block transmitted by the terminal. The
acknowledgment is indicated in the sequence number of the I-block, or the
R-block if chaining is in use (except the last block of the chain), that the ICC
returns to the terminal.

e An I-block is considered by the sender to be acknowledged when the sequence
number of the I-block received in response differs from the sequence number of
the previously received I-block. If no I-block was previously received, the
sequence number of the I-block sent in response shall be 0.

» During chaining, an I-block is considered by the sender to be acknowledged when
the sequence number of the R-block sent in response differs from the sequence
number of the I-block being acknowledged and it has bits b4-b1 set to ‘0’
(indicating an error free block).

e If the ICC requires more than the BWT to process the previously received
I-block, it sends a waiting time extension request S(WTX request) block, where
the INF contains the one-byte binary integer multiplier of the BWT value
requested. The terminal shall acknowledge by sending a waiting time extension
response S(WTX response) block with the same value in the INF. The time
allocated (which is the time requested in the S(WTX request) block, and which
replaces BWT for this instance only) starts at the leading edge of the last
character of the S(WTX response) block. After the ICC responds, BWT is again
used as the time allowed for the ICC to process the I-block.

* S-blocks are only used in pairs. A S(request) block is always followed by a
S(response) block.

When synchronisation as outlined above is lost, the procedure described in section I-
5.2.5 shall apply.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-41

5.2.4.4 Chaining

When the sender has to transmit data of length greater than IFSC or IFSD bytes, it
shall divide it into several consecutive I-blocks. The transmission of these multiple
I-blocks is achieved using the chaining function described below.

The chaining of I-blocks is controlled by b6 of the PCB. The coding of b6 is as
follows:

e b6=0 Last block of the chain
e b6=1 Subsequent block follows

Any I-block with b6 = 1 shall be acknowledged by an R-block according to section I-
5.2.4.1.

The last block of a chain sent by the terminal shall be acknowledged by either an
I-block if correctly received, or an R-block if incorrectly received. The last block of a
chain sent by the ICC shall be acknowledged by an R-block if incorrectly received; if
correctly received, the terminal will only transmit further I-blocks if another
command is to be processed.

5.2.4.4.1 Rules for Chaining

The TTL shall support chaining for both transmitted and received blocks. The ICC
may optionally chain blocks sent to the terminal. Chaining is only possible in one
direction at a time. The following rules for chaining apply:

« When the terminal is the receiver, the terminal shall accept a sequence of
chained I-blocks sent from the ICC of length < IFSD bytes per block.

« When the ICC is the receiver, the ICC shall accept a sequence of chained I-blocks
sent from the terminal all having length LEN = IFSC except the last block,
whose length may be in the range 1 to IFSC bytes inclusive.

« When the ICC is the receiver, the ICC shall reject an I-block sent by the terminal
of length > IFSC using an R-block with bits b4-b1 of the PCB having a value of
‘2’ (see Table 1-24).

« |f the ICC as sender chains blocks sent to the terminal it shall send I-blocks of
length <IFSD bytes per block

« When the terminal is the sender, all I-blocks of a chain sent to the ICC shall
have LEN = IFSC bytes except the last, which shall have a length in the range 1
to IFSC bytes inclusive.

1-42 Part | - Electromechanical Characteristics and Protocols May 31, 1998

5.2.4.4.2 Construction of Chained Blocks

C-APDUs are transported from the TTL to the ICC in the INF field of I-blocks (see
section 1-5.3.2). If a C-APDU is too large to fit in one block, it is chained over
several as illustrated in the following example.

Block(1) | CLAINSP1P2 | Lc | Data Data
Block(2) | Data Data Data
Block(n) | Data Data | Le |

The data and status returned by the ICC may optionally be chained over several
I-blocks as follows.

Block(1) | Data Data Data
Block(2) | Data Data Data
Block(n) | Data Data | SW1Sw2 |

Note: The above examples are for a case 4 command and show only the INF fields of the chained
blocks. Each block also has a prologue and epilogue field. All chained blocks shall contain an INF
field having a length in the range 1 to IFSD bytes if the ICC is the sender, or IFSC bytes during
chaining and 1 to IFSC bytes in the last block of the chain if the terminal is the sender.

5.2.5 Error Detection and Correction for T=1
The following errors shall be detected by the TTL:

« Transmission error including parity error, EDC error, and BWT time-out.

Note: If a parity error is detected, character repetition shall not be implemented when using
T=1.

* Loss of synchronisation (under run or overrun of the number of characters).
* Protocol error (infringement of the rules of the protocol).

* Abort request for a chain of blocks.

Error recovery is attempted in the following manner.

The TTL shall attempt error recovery by trying the following techniques in the order
shown.

1. Retransmission of blocks

2. Deactivation of the ICC contacts

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-43

The ICC shall attempt error recovery by trying retransmission of blocks.

If a block is retransmitted, the retransmitted block shall be identical to the
originally transmitted block.

Note: In some terminals the TTL may not be solely responsible for error handling. Where ‘TTL' is
used it includes any functionality present in the terminal as applicable.

5.2.5.1 Protocol Rules for Error Handling

The following rules apply for error handling and correction. In each case where a
R-block is sent, the I.s. nibble shall be set to ‘1’ for EDC/parity errors or ‘2’ for other
errors (including protocol errors)as defined in Table 1-24.

» If the first block received by the ICC after the answer to reset is invalid, it shall
return an R-block to the TTL with b5 = 0 and NAD = 0.

» If there is no response from the ICC to any block sent by the TTL within time
BWT (or WTX if waiting time extension has been negotiated), or the time
between the start bits of the leading edges of two consecutive characters sent by
the ICC exceeds CWT, the terminal shall terminate the card session by initiating
the deactivation sequence within 4,800 etus.

e If aninvalid block is received in response to an I-block, the sender shall transmit
a R-block with b5 set to the number of the next I-block it had expected to receive.

» If aninvalid block is received in response to a R-block, the sender shall
retransmit the R-block.

* If a S(... response) block is not received in response to a S(... request) block, the
sender shall retransmit the S(... request) block.

« If aninvalid block is received in response to a S(... response) block, the sender
shall transmit a R-block with b5 set to the number of the next expected I-block.

« Ifthe TTL has sent a block a maximum of three times in succession, or the ICC
has sent a block a maximum of twice in succession without obtaining a valid
response, the TTL shall terminate the card session by deactivating the ICC
contacts. If the terminal is the receiver, it shall initiate the deactivation sequence
within 9,600 etus following reception of the leading edge of the start bit of the last
character of the repeated block. If the terminal is the sender, it shall initiate the
deactivation sequence within 9,600 etus following reception of the leading edge of
the start bit of the last character of the R-block requesting retransmission. The
error coding bits (b4 — b1) of R-blocks shall be ignored.

Note: Resynchronisation is not required by this specification. If for proprietar y reasons the
terminal supports resynchronisation, it may attempt this by sending a S(RESYNCH request) to
try to obtain a valid response (a S(RESYNCH response)) from the ICC before terminating the card
session.

1-44 Part | - Electromechanical Characteristics and Protocols May 31, 1998

« |f the ICC or terminal as receiver detects an overrun of data the block shall be
treated as invalid. The 2nd, 3rd 4th and 6t bullets apply.

Note: The receiver may detect an overrun of data by waiting CWT to ensure no further
characters are received, or by checking the 1/O line prior to transmitting. An overrun of data may
go undetected by the receiver. Waiting CWT to detect overrun is not required by these
specifications, and may adversely affect transmission speed.

e The ICC shall send a S(IFS request) block a maximum of three times in
succession in an attempt to obtain a valid S(IFS response) from the TTL. After
three unsuccessful attempts, it shall remain in receive mode.

+ A S(ABORT request) shall not be sent by the terminal. If the terminal receives a
S(ABORT request) from the ICC, it shall terminate the card session by initiating
the deactivation sequence within 9,600 etus following reception of the leading
edge of the start bit of the last character of the S(ABORT request) block.

Note: Transaction abortion is not required by this specification. If an ICC or terminal supports
abortion for proprietary reasons it may issue a S(ABORT request), but note that it will receive an
invalid response if the receiver does not also support abortion. In this event the card session will
be terminated according to the rules above. If a terminal optionally supporting abortion receives a
S(ABORT request) from an ICC it may return a S(ABORT response) rather than terminating the
card session.

5.3 Terminal Transport Layer (TTL)

This section describes the mechanism by which command and response APDUs are
transported between the terminal and the ICC. APDUs are command or response
messages, and since both command and response messages may contain data the
TTL shall be capable of managing the four cases defined in section 1-5.4. The
construction of C-APDUSs and R-APDUs are described in sections 1-5.4.1 and 1-5.4.2,
respectively.

The C-APDU is passed from the TAL to the TTL where it is mapped in a manner
appropriate to the transmission protocol to be used before being sent to the ICC.
Following processing of the command by the ICC, data (if present) and status are
returned by the ICC to the TTL, which maps it onto the R-APDU.

5.3.1 Transport of APDUs by T=0

This section describes the mapping of C-APDUs and R-APDUSs, the mechanism for
exchange of data between the TTL and the ICC, and the use of the

GET RESPONSE command for retrieval of data from the ICC when case 2 or 4
commands are used.

5.3.1.1 Mapping of C-APDUs and R-APDUs and Data Exchange

The mapping of the C-APDU onto the T=0 command header is dependent upon the
case of the command. The mapping of the data (if present) and status returned by

May 31, 1998 Part | - Electromechanical Characteristics and Protocols I-45

the ICC onto the R-APDU is dependent upon the length of the data returned and the
meaning of the status bytes.

Procedure bytes ‘61xx’ and ‘6Cxx’ are returned by the ICC to control exchanges
between the TTL and the ICC, and should never be returned to the TAL. Command
processing in the ICC is not complete if it has returned procedure bytes ‘61xx’ or
‘6CxX.

Note: For proprietary reasons, the TTL may in addition be capable of accepting data from the ICC
without using the 61’ and ‘6C’ procedure bytes. Such functionality is not required and is beyond the
scope of these specifications.

Normal status on completion of processing a command is indicated if the ICC
returns status bytes SW1 SW2 = ‘9000’ to the TTL. The TTL shall discontinue
processing of a command on receipt of any other status (but not on receipt of
procedure bytes ‘61xx’ and ‘6Cxx’) from the ICC. (For case 4 commands only,
immediately following successful transmission of command data to the ICC, the TTL
shall continue processing the command if warning status bytes (‘62xx’ or ‘63xx’) or
application related status bytes (‘9xxx’ except ‘9000) are received.)

The following descriptions of the mapping of data and status returned by the ICC
onto the R-APDU are for information, and apply only after the ICC has completed
processing of the command, successfully or otherwise, and all data (if present) has
been returned by the ICC under the control of ‘61xx’ and ‘6Cxx’ procedure bytes.

Detailed use of the INS, INS, and ‘60’ procedure bytes is not described.

The status returned by the ICC shall relate to the most recently received command,
where a GET RESPONSE command is used to complete the processing of a case 2 or
case 4 command, any status returned by the ICC after receipt of the GET
RESPONSE command shall relate to GET RESPONSE command, not to the case 2
or case 4 command which it completes.

5.3.1.1.1 Casel

The C-APDU header is mapped onto the first four bytes of the T=0 command
header, and P3 of the T=0 command header is set to ‘00'.

The flow of the exchange is as follows:
1. The TTL shall send the T=0 command header to the ICC.

2. On receipt of the command header the ICC, under normal or abnormal
processing, shall return status to the TTL.

(The ICC shall analyse the T=0 command header to determine whether it is
processing a case 1 command or a case 2 command requesting all data up to the
maximum length available.)

3. On receipt of status from the ICC, the TTL shall discontinue processing of the
command.

I-46 Part | - Electromechanical Characteristics and Protocols May 31, 1998

See Annex A, section Al, for details of the exchanges between the TTL and the ICC.

The status returned to the TTL from the ICC after completion of processing of the
command is mapped onto the mandatory trailer of the R-APDU without change.

5.3.1.1.2 Case 2

The C-APDU header is mapped onto the first four bytes of the T=0 command
header, and length byte ‘Le’ from the conditional body of the C-APDU is mapped
onto P3 of the T=0 command header. All case 2 commands issued according to this
specification shall have Le set to ‘'00’; see Part Il of this specification.

The flow of the exchange is as follows:
1. The TTL shall send the T=0 command header to the ICC.
2. On receipt of the command header the ICC:

(a) under normal processing shall return data and status to the TTL. The ICC
shall use procedure bytes ‘6Cxx’ (and if required, procedure bytes ‘61xx’) to
control the return of data.

OR
(b) under abnormal processing shall return status only to the TTL.

3. On receipt of the data (if present) and status from the ICC, the TTL shall
discontinue processing the command.

See Annex A, section A2, for details of the exchanges between the TTL and the ICC,
including use of the ‘61xx’ and ‘6Cxx’ procedure bytes.

The data (if present) and status returned to the TTL from the ICC after completion
of processing of the command, or the status returned by the ICC that caused the
TTL to discontinue processing of the command, are mapped onto the R-APDU as
follows:

The data returned (if present) is mapped onto the conditional body of the R-APDU.
If no data is returned, the conditional body of the R-APDU is left empty.

The status returned is mapped onto the mandatory trailer of the R-APDU without
change.

5.3.1.1.3 Case 3

The C-APDU header is mapped onto the first four bytes of the T=0 command
header, and length byte ‘Lc’ from the conditional body of the C-APDU is mapped
onto P3 of the T=0 command header.

The flow of the exchange is as follows:

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-47

1. The TTL shall send the T=0 command header to the ICC.

2. On receipt of the command header, if the ICC:
(a) returns a procedure byte, the TTL shall send the data portion of the
conditional body of the C-APDU to the ICC under the control of procedure bytes
returned by the ICC
OR

(b) returns status, the TTL shall discontinue processing of the command.

3. If processing was not discontinued in step 2(b), the ICC shall return status
following receipt of the conditional body of the C-APDU and completion of
processing the command.

4. On receipt of status from the ICC, the TTL shall discontinue processing the
command.

See Annex A, section A3, for details of the exchanges between the TTL and the ICC.
The status returned to the TTL from the ICC after completion of processing of the

command, or the status returned by the ICC that caused the TTL to discontinue
processing of the command, is mapped onto the R-APDU without change.

5.3.1.1.4 Case 4
The C-APDU header is mapped onto the first four bytes of the T=0 command
header, and length byte ‘Lc’ from the conditional body of the C-APDU is mapped
onto P3 of the T=0 command header. All case 4 commands issued according to this
specification shall have Le set to ‘00’; see Part 11 of this specification.
The flow of the exchange is as follows:
1. The TTL shall send the T=0 command header to the ICC.
2. On receipt of the command header, if the ICC:
(a) returns a procedure byte, the TTL shall send the data portion of the
conditional body of the C-APDU to the ICC under the control of procedure bytes
returned by the ICC
OR

(b) returns status, the TTL shall discontinue processing of the command.

3. If processing was not discontinued in step 2(b), following receipt of the
conditional body of the C-APDU, the ICC:

(a) under normal processing, shall return procedure bytes ‘61xx’ to the TTL

1-48 Part | - Electromechanical Characteristics and Protocols May 31, 1998

requesting the TTL to issue a GET RESPONSE command to retrieve the data
from the ICC

OR
(b) under abnormal processing, shall return status only to the TTL.
4. On receipt of the procedure bytes or status returned in step 3, if the ICC:

(a) returned ‘61xx’ procedure bytes as in step 3(a), the TTL shall send a
GET RESPONSE command header to the ICC with P3 set to a value less than or
equal to the value contained in the ‘xx’ byte of ‘61xx’ procedure bytes

OR

(b) returned status as in step 3(b) that indicates a warning (‘62xx’ or ‘63xx’), or
which is application related (‘9xxx’ but not ‘9000’), the TTL shall send a
GET RESPONSE command with Le="00’

OR

(c) returned status as in step 3(b) other than that described in step 4(b), the TTL
shall discontinue processing of the command.

5. If processing was not discontinued in step 4(c), the GET RESPONSE command
shall be processed according to the rules for case 2 commands in section I-
5.3.1.1.2.

See Annex A, section A4, for details of the exchanges between the TTL and the ICC,
including use of the ‘61xx’ and ‘6Cxx’ procedure bytes.

The data (if present) and status returned to the TTL from the ICC after completion
of processing of the command, or the status returned by the ICC that caused the
TTL to discontinue processing of the command, are mapped onto the R-APDU as
follows:

The data returned (if present) is mapped onto the conditional body of the R-APDU.
If no data is returned, the conditional body of the R-APDU is left empty.

The first status returned during processing of the entire case 4 command, including
the GET RESPONSE command if used, is mapped onto the mandatory trailer of the
R-APDU without change.

5.3.1.2 Use of Procedure Bytes ‘61xx’ and ‘6Cxx’

The ICC returns procedure bytes ‘61xx ‘and ‘6Cxx’ to the TTL to indicate to it the
manner in which it should retrieve the data requested by the command currently
being processed. These procedure bytes are only used when processing case 2 and 4
commands using T=0.

May 31, 1998 Part | - Electromechanical Characteristics and Protocols 1-49

Procedure bytes ‘61xx’ instruct the TTL to issue a GET RESPONSE command to the
ICC. P3of the GET RESPONSE command header is set to < 'xx’.

Procedure bytes ‘6Cxx’ instruct the TTL to immediately resend the previous
command header setting P3 = ‘xx’.

Usage of these procedure bytes during error free processing with case 2 and 4
commands is as follows. In the case of an error, the ICC may return status
indicating error or warning conditions instead of the ‘61xx’ or ‘6Cxx’ response.

5.3.1.2.1 Case 2 Commands

1.

If the ICC receives a case 2 command header and Le = ‘00’ or Le > Licc, it shall
return

(a) procedure bytes ‘6C Licc’ instructing the TTL to immediately resend the
command header with P3 = Licc

OR

(b) status indicating a warning or error condition (but not SW1 SW2 = '90 00’)

If the ICC receives a case 2 command header and Le = Licc, it shall return

(a) data of length Le (= Licc) under the control of the INS, INS, or ‘60’ procedure
bytes followed by the associated status

OR

(b) procedure bytes ‘61xx’ instructing the TTL to issue a GET RESPONSE
command with a maximum length of ‘xx’

OR
(c) status indicating a warning or error condition (but not SW1 SW2 = ‘90 00"

If the ICC receives a case 2 command header and Le < Licc it shall return

(a) data of length Le under the control of the INS, INS, or ‘60’ procedure bytes
followed by procedure bytes ‘61xx’ instructing the TTL to issue a
GET RESPONSE command with a maximum length of ‘xx’

OR

(b) procedure bytes ‘6C Licc’ instructing the TTL to immediately resend the
command header with P3 = Licc

OR
(c) status indicating a warning or error condition (but not SW1 SW2 = ‘90 00"

3(b) above is not valid response by the ICC to a GET RESPONSE command.

I-50 Part | - Electromechanical Characteristics and Protocols

5.3.1.2.2 Case 4 Commands

1. If the ICC receives a case 4 command, after processing the data sent with the
C-APDU, it shall return

(a) procedure bytes ‘61 xx’ instructing the TTL to issue a GET RESPONSE

command with a maximum length of ‘xx’

OR

(b) status indicating a warning or error condition (but not SW1 SW2 =90 00')

The GET RESPONSE command so issued is then treated as described in section |-

5.3.1.2.1 for case 2 commands.

5.3.1.3 GET RESPONSE Command

The GET RESPONSE command is issued by the TTL to obtain available data from
the ICC when processing case 2 and 4 commands. It is employed only when the T=0

protocol type is in use.

The structure of the command message is shown in Table 1-26:

CLA ‘00’
INS ‘cOo
P1 ‘00’
P2 ‘00’
Le Maximum length of data expected

Table 1-26 - Structure of Command Message

Following normal processing, the ICC returns status bytes SW1 SW2 ='9000’ and

Licc bytes of data.

In the event that an error condition occurs, the coding of the error status bytes

(SW1 SW?2) is shown in Table 1-27:

May 31, 1998

May 31, 1998 Part | - Electromechanical Characteristics and Protocols

I-51

Swil SwW2 Meaning

62’ ‘81 Part of returned data
may be corrupted

‘67 ‘00’ Length field incorrect

‘6A ‘86’ P1 P2 #'00’

‘6F’ ‘00’ No precise diagnosis

Table I-27 - GET RESPONSE Error Conditions

5.3.2 Transportation of APDUs by T=1
The C-APDU is sent from the TAL to the TTL. The TTL maps the C-APDU onto the

INF field of an I-block without change, and sends the I-block to the ICC.

Response data (if present) and status is returned from the ICC to the TTL in the
INF field of an I-block. If the ICC returns status indicating normal processing

('61xx’), a warning (‘62xx’ or ‘63xx’), which is application related (‘9xxx’), or is ‘9000’,

it shall also return data (if available) associated with processing of the command.
No data shall be returned with any other status. The contents of the INF field of

the I-block are mapped onto the R-APDU without change and returned to the TAL.

Note: C-APDUs and response data/status may be chained over the INF fields of multiple blocks if

required.

5.4 Application Layer

The application protocol consists of an ordered set of exchanges between the TAL
and the TTL. Application protocols are defined in subsequent parts of this

specification.

Each step in an application layer exchange consists of a command-response pair,

where the TAL sends a command to the ICC via the TTL, and the ICC processes it
and sends a response via the TTL to the TAL. Each specific command has a specific

response. An APDU is defined as a command message or a response message.

Both command and response messages may contain data. Thus, four cases shall be

managed by the transmission protocols via the TTL, as shown in Table 1-28:

-52 Part | - Electromechanical Characteristics and Protocols May 31, 1998

Case Command Data Response Data
1 Absent Absent
2 Absent Present
3 Present Absent
4 Present Present

Table I-28 - Definition of Cases for Data in APDUs

Note: When secure messaging is used only case 3 and case 4 commands exist since data (as a
minimum, the MAC) is always sent to the ICC. When using secure messaging, case 1 commands will
become case 3, and case 2 commands will become case 4.

5.4.1 C-APDU

The C-APDU consists of a mandatory header of four consecutive bytes denoted CLA,
INS, P1, and P2, followed by a conditional body of variable length.

These mandatory header bytes are defined as follows:
* CLA: Instruction class; may take any value except ‘FF'.

* INS: Instruction code within the instruction class. The INS is only valid if the
l.s. bit is 0, and the m.s. nibble is neither ‘6’ nor ‘9’

* P1, P2: Reference bytes completing the INS.
Note: The full coding of the headers for each command is covered in Part 11 of this specification.
The conditional body consists of a string of bytes defined as follows:

* 1 byte, denoted by Lc, defining the number of data bytes to be sent in the
C-APDU. The value of Lc may range from 1 to 255.

» String of bytes sent as the data field of the C-APDU, the number of bytes sent
being as defined by Lc.

* 1 byte, denoted by Le, indicating the maximum number of data bytes expected in
the R-APDU. The value of Le may range from 0 to 255; if Le = 0, the maximum
number of bytes expected in the response is 256.

Note: The full coding of the data field of the conditional body for each command is covered in Part 11
of this specification.

Four cases of C-APDU structure are possible as defined in Table 1-29:

May 31, 1998 Part | - Electromechanical Characteristics and Protocols I-53

Case Structure
1 CLA INS P1 P2
2 CLA INS P1P2Le
3 CLA INS P1 P2 Lc Data
4 CLA INS P1 P2 Lc Data Le

Table 1-29 - Cases of C-APDUSs
5.4.2 R-APDU

The R-APDU is a string of bytes consisting of a conditional body followed by a
mandatory trailer of two bytes denoted SW1 SW2.

The conditional body is a string of data bytes with a maximum length as defined by
Le in the C-APDU.

The mandatory trailer indicates the status of the ICC after processing the command.

| The coding of SW1 SW2 is defined in Part Il of this specification.

I-54 Part | - Electromechanical Characteristics and Protocols May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

Part Il

Data Elements and Commands

May 31, 1998 Part Il - Data Elements and Commands -1

1. Data Elements and Files

An application in the ICC includes a set of items of information. These items of
information may be accessible to the terminal after a successful application selection
(see Part 111 of this specification).

An item of information is called a data element. A data element is the smallest
piece of information that may be identified by a name, a description of logical
content, a format, and a coding.

1.1 Data Elements Associated with Financial
Transaction Interchange

The data element directory defined in Annex B, Table B-1 includes those data
elements that may be used for financial transaction interchange. Data elements not
specified in Annex B, Table B-1, are outside the scope of these specifications.

1.2 Data Objects

A data object consists of a tag, a length, and a value. A tag uniquely identifies a
data object within the environment of an application. The length is the length of the
value field of the data object. The value of a data object may consist either of a data
element or of one or more data objects. When a data object encapsulates a data
element, it is called a primitive data object. When a data object encapsulates one or
more data objects, it is called a constructed data object. Specific tags are assigned to
the constructed data objects with a specific meaning in the environment of an
application according to this specification. The value field of such constructed data
objects is a context-specific template. Rules for the coding of context-specific data
objects and templates are given in Annex C.

Table B-1 in Annex B describes the mapping of data elements onto data objects and
the mapping of data objects into templates when applicable.

Records are templates containing one or more primitive and/or constructed data
objects.

The mapping of data objects into records is left to the discretion of the issuer and the
manner in which data elements are to be used is described in the ICC Application
Specification for Payment Systems.

Annex C defines the tags that are reserved by this specification for EMV, the
payment systems and issuers. All ICC applications conforming to this specification
shall comply with this coding and allocation scheme in accordance with ISO/IEC
7816-6.

-2 Part Il - Data Elements and Commands May 31, 1998

1.2.1 Classes of Data Objects

Identification and coding of different classes of data objects are defined in Annex C.
The tag definitions specified in that annex are according to ISO/IEC 8825 and
ISO/IEC 7816 series and apply to applications conforming to this specification.

1.3 Files

The data objects contained in data files accessible from the ICC are stored in
records. The file structure and referencing method depend on the purpose of the file.
Structures and referencing methods are described in the following sections. The
layout of the data files accessible from the ICC is left to the discretion of the issuer
except for the directory files described in the following section.

1.3.1 File Structure

The file organisation applying to this specification is deduced from and complies
with the basic organisations as defined in ISO/IEC 7816-4.

This part describes the file structure of the applications conforming to this
specification, named Payment System Applications (PSA). Other applications
conforming to ISO/IEC 7816-4 but not necessarily conforming to this specification
may also be present in the ICC. They may be managed by the commands defined in
this specification.

The path to the set of PSA in the ICC is enabled by explicitly selecting the Payment
System Environment (PSE), when present. A successful selection of the PSE gives
access to the directory structure as described in section 11-1.3.1.4. The application
selection process is described in Part I11 of this specification.

When the PSE is present, the PSA related files can be seen from the terminal as a
tree structure accessible through a directory structure. Every branch of the tree is
an application definition file (ADF) or a directory definition file (DDF). An ADF is
the entry point to one or more application elementary files (AEFs). An ADF and its
related data files are seen as being on the same branch of the tree. A DDF is an
entry point to other ADFs or DDFs.

1.3.1.1 Application Definition Files

The tree structure of ADFs:

« Enables the attachment of data files to an application.

« Ensures the separation between applications.

« Allows access to the logical structure of an application by its selection.

May 31, 1998 Part Il - Data Elements and Commands 11-3

An ADF is seen from the terminal as a file containing only data objects encapsulated
in its file control information (FCI) as shown in Table 11-31.

1.3.1.2 Application Elementary Files

An AEF in the range 1-10, contains one or more primitive Basic Encoding Rules -
Tag Length Value (BER-TLV) data objects grouped into constructed BER-TLV data
objects (records) according to Annex C. After selecting the application, an AEFin
the range 1-10 is only referred to by its short file identifier (SFI) as described in
section 11-1.3.2.

A data file referred to in this specification consists of a sequence of records addressed
by record number. The data files referred to by SFls in the range 1-10 contain only
data not interpreted by the card, that is, data that is not used by the card in its
internal processes. This file structure is defined as linear. It can be either linear
fixed or linear variable according to ISO/IEC 7816-4. The choice is left to the issuer
and does not impact the reading of the file according to this specification.

1.3.1.3 Mapping of Files Onto ISO/IEC 7816-4 File Structure
The following mapping onto ISO/IEC 7816-4 applies:

« A dedicated file (DF) as defined in ISO/IEC 7816-4, containing a FCI is mapped
onto an ADF or a DDF. It may give access to elementary files and DFs. The DF
at the highest level of the card is the master file (MF).

« An elementary file (EF) as defined in ISO/IEC 7816-4, containing a set of records
is mapped onto the AEF. An EF is never used as an entry point to another file.

If DFs are embedded, retrieval of the attached EF is transparent to this
specification.

1.3.1.4 Directory Structure

When the PSE is present, the ICC shall maintain a directory structure for the list of
applications within the PSE that the issuer wants to be selected by a directory. In
that case, the directory structure consists of a payment system directory file (DIR
file) and optional additional directories introduced by directory definition files (DDF)
as described in this section.

The directory structure allows for the retrieval of an application using its
Application Identifier (AID) or the retrieval of a group of applications using the first
n-bytes of their AID as DDF name.

The presence of the DIR file shall be coded in the response message to the selection
of the PSE (see the SELECT command).

-4 Part Il - Data Elements and Commands May 31, 1998

The DIR file is an AEF (in other words, an EF with a record structure according to
this specification) including the following data objects according to ISO/IEC 7816-5:

* One or more Application Templates (tag ‘61’) as described in Part I11 of this
specification.

» Other data objects may be present within a Directory Discretionary Template
(tag ‘'73’). The data objects contained in this template are outside the scope of this
specification.

Directories other than the payment system directory are optional within an ICC, but

there is no defined limit to the number of such directories that may exist. Each such
directory is located by a directory SFI data object contained in the FCI of each DDF.

1.3.2 File Referencing
A file may be referred to by a name or a SFI depending on its type.
1.3.2.1 Referencing by Name

Any ADF or DDF in the card is referenced by its DF name. A DF name for an ADF
corresponds to the AID. Each DF name shall be unique within a given card.

1.3.2.2 Referencing by SFI
SFIs are used for the selection of AEFs. Any AEF within a given application is
referenced by a SFI coded on 5 bits in the range 1 to 30. The coding of the SFI is

described in every command that uses it.

The structure of a SFI is according to Table 11-1:

Value Meaning

1-10 Governed by this specification
11-20 | Payment system specific
21-30 | Issuer specific

Table lI-1 - Structure of SFI

A SFI shall be unique within an application. The coding of SFIs within the range 1
to 10 is used to address AEFs governed by this specification.

1.4 Rules for Using a Data Object List (DOL)

In several instances, the terminal is asked to build a flexible list of data elements to
be passed to the card under the card’s direction. To minimise processing within the
ICC, such a list is generally not TLV encoded but is a single constructed field built
by concatenating several data elements together. Since the elements of the
constructed field are not TLV encoded, it is imperative that the ICC knows the

May 31, 1998 Part Il - Data Elements and Commands 11-5

format of this field when the data is received. This is achieved by including a Data
Object List (DOL) in the ICC, specifying the format of the data to be included in the
constructed field. DOLs currently used in this specification include the PDOL used
with the GET PROCESSING OPTIONS command, CDOL1 and CDOL2 used with
the GENERATE AC command, the TDOL used to generate a TC Hash Value, and
the DDOL used with the INTERNAL AUTHENTICATE command. This section
describes the rules for constructing a field using a DOL supplied by the card.

A DOL is a concatenated list of entries, with each entry representing a single data
element to be included in the constructed field. The format of each entry is a one- or
two-byte tag identifying the desired data object, followed by a one-byte length,
representing the number of bytes the field shall occupy in the command data. Only
tags representing primitive data objects defined in Annex B shall be used in DOLSs.

The terminal shall complete the following steps to build the constructed field:
1. Read the DOL from the ICC.

2. Concatenate together all data elements listed in the DOL. The following
rules apply to the creation of this concatenation:

a) If the tag of any data object identified in the DOL is unknown to the
terminal or represents a constructed data object, the terminal shall
provide a data element with the length specified and a value of all
hexadecimal zeroes.

b) If a data object is in the list and is meaningful to the terminal but
represents optional static data that is absent from the ICC, the
portion of the command field representing the data object shall be
filled with hexadecimal zeroes.

C) If the length specified in the DOL entry is less than the length of the
actual data object, the leftmost bytes of the data element shall be
truncated if the data object has numeric (n) format, or the rightmost
bytes of the data shall be truncated for any other format. If the
length specified is greater than the actual data, the actual data shall
be padded with leading hexadecimal zeroes if the data has numeric
format, with hexadecimal FF's if the data has compressed numeric
(cn) format, or with trailing hexadecimal zeroes for any other format.

d) If a data object is in the list and is meaningful to the terminal but
represents data that is not applicable to the current transaction, the
portion of the command field representing the data object shall be
filled with hexadecimal zeroes.

The completed list of data elements shall be concatenated in the sequence in which
the corresponding data objects appear in the DOL.

11-6 Part Il - Data Elements and Commands May 31, 1998

2. Commands for Financial Transaction

2.1 Message Structure

Messages are transported between the terminal and the card according to the
transmission protocol selected at the ATR (see Part | of this specification). The
terminal and the card shall also implement the physical, data link, and transport
layers as defined in Part I.

To run an application, an additional layer called application protocol is implemented
in the terminal. It includes steps consisting of sending a command to the card,
processing it in the card, and sending back the ICC response to the command. All
commands and responses referred to in this part and further parts of this
specification, are defined at the application layer.

The command message sent from the application layer and the response message
returned by the card to the application layer are called Application Protocol Data
Units (APDU). A specific response corresponds to a specific command. These are
referred to as APDU command-response pairs. In an APDU command-response
pair, the command message and the response message may contain data.

This section describes the structure and coding of the APDU command-response
pairs necessary to the application protocols defined in this specification. Post-
issuance commands defined in this section are optional. All other commands shall
be implemented as required by specific applications.

2.1.1 Command APDU Format

The command APDU consists of a mandatory header of four bytes followed by a
conditional body of variable length, as shown in Figure 11-1:

CLA | INS | P1 | P2 Lc Data Le
— Mandatory Header - | Conditional Body -

Figure Il-1 - Command APDU Structure

The number of data bytes sent in the command APDU is denoted by Lc (length of
command data field).

The maximum number of data bytes expected in the response APDU is denoted by
Le (length of expected data). When Le is present and contains the value zero, the

maximum number of data bytes (256) is requested. When required in a command

message, Le shall always be set to ‘00'.

The content of a command APDU message is as shown in Table 11-2:

May 31, 1998 Part Il - Data Elements and Commands -7

Code Description Length
CLA | Class of instruction 1
INS | Instruction code 1
P1 Instruction parameter 1 1
P2 Instruction parameter 2 1
Lc Number of bytes present in command data field Oor1l

Data | String of data bytes sent in command (= Lc) var.

Le Maximum number of data bytes expected in data Oor1l
field of response

Table lI-2 - Command APDU Content

The different cases of command APDU structure are described in Part | of this
specification.

2.1.2 Response APDU Format

The response APDU format consists of a conditional body of variable length followed
by a mandatory trailer of two bytes, as shown in Figure I1-2:

Data SW1 | sw2
- Body - « Trailer -

Figure 11-2 - Response APDU Structure

The data field of a response APDU is an object structured as defined in Annex C.
The detailed coding of the objects is provided with the commands described in
subsequent sub-clauses.

The number of data bytes received in the response APDU is denoted by Lr (length of
response data field). Lr is not returned by the transport layer. The application
layer may rely on the object oriented structure of the response message data field to
calculate Lr if needed.

The trailer codes on two bytes the processing state of the command as returned by
the transport layer.

The content of a response APDU message is as shown in Table 11-3:

Code Description Length
Data | String of data bytes received in response (= Lr) var.
SW1 | Command processing status 1
SW2 | Command processing qualifier 1

Table II-3 - Response APDU Content

11-8 Part Il - Data Elements and Commands May 31, 1998

2.1.3 Command-Response APDU Conventions

In an APDU command-response pair, both the command message and the response
message may contain data, thus resulting in four cases, as shown in Table 11-4:

Case | Command Data | Response Data
1 Absent Absent
2 Absent Present
3 Present Absent
4 Present Present

Table II-4 - Data Within an APDU Command-Response Pair

These four cases are handled by the transmission protocol selected at the ATR
according to Part | of this specification.

2.2 Coding Conventions

This section defines the coding of the header and the body of the messages
(command and response).

2.2.1 Coding of the Class Byte

The most significant nibble of the class byte codes the type of command as shown in
Table 11-5:

Hex. Meaning
‘0’ Inter-industry command
‘g’ Proprietary to this specification
Any other | Outside the scope of this specification
value

Table 1I-5 - Most Significant Nibble of the Class Byte

A command proprietary to this specification is introduced by the most significant
nibble of the class byte set to ‘8, in other words, the structure of the command and
response messages is according to ISO/IEC 7816-4, the coding of the messages is
defined within the context of the PSE.

The least significant nibble of the class byte codes secure messaging and logical
channel mechanisms, according to ISO/IEC 7816-4.

2.2.2 Coding of the Instruction Byte

The INS byte of a command is structured according to Part | of this specification.
The coding of INS and its relationship to CLA as shown in Table 11-6 applies:

May 31, 1998 Part Il - Data Elements and Commands 11-9

CLA | INS Meaning

‘8x" | "1E’ | APPLICATION BLOCK

‘8x" | ‘18 | APPLICATION UNBLOCK

‘8x’ | 16’ | CARD BLOCK

‘0x' | ‘82" | EXTERNAL AUTHENTICATE

‘8x" | 'AE’ | GENERATE APPLICATION CRYPTOGRAM

‘0x’ | ‘84 | GET CHALLENGE

‘8x' | 'CA’ | GET DATA

‘8x" | ‘A8 | GET PROCESSING OPTIONS

‘Ox' | ‘88" | INTERNAL AUTHENTICATE

‘8x" | ‘24’ | PERSONAL IDENTIFICATION NUMBER (PIN)
CHANGE/UNBLOCK

‘0x’ | ‘B2’ | READ RECORD

‘0x' | ‘A4’ | SELECT

‘0x’ | ‘20" | VERIFY

‘8x" | ‘DX’ | RFU for the payment systems

‘8x" | 'ExX’ | RFU for the payment systems

‘Ox’ | ‘xx’ | RFU for manufacturers for proprietary INS coding
‘Ex’ | ‘xx’ | RFU for issuers for proprietary INS coding

Table II-6 - Coding of the Instruction Byte

Note: Additional INS codes may be assigned in the future in the PSE context using the class ‘8x". It
is strongly recommended not to define proprietary commands in the class ‘8x’ when they are to be
used in the PSE context, so that collision is avoided.

2.2.3 Coding of Parameter Bytes

The parameter bytes P1 P2 may have any value. If not used, a parameter byte has
the value ‘00'.

2.2.4 Coding of Data Field Bytes

When present, an APDU command message data field consists of a string of data
elements.

When present, an APDU response data field consists of a data object or a string of
data objects encapsulated in a template according to Annex C.

2.2.5 Coding of the Status Bytes

The status bytes SW1 SW2 are returned by the transport layer to the application
layer in any response message and denote the processing state of the command. The
coding of the status words is structured according to Figure 11-3:

11-10 Part Il - Data Elements and Commands May 31, 1998

SW1 Sw2

Process Completed Process Aborted

——

Normal Warning Execution Checking

‘61xX 'B2xX 'B3XX64XX ‘65xX’ ‘67xx’ to
‘9000’ ‘6Fxx’

Figure 1I-3 - Structural Scheme of Status Bytes

Coding of SW1 SW2 is as shown in Table 11-7 for those status bytes for which the
ICC Application Specification for Payment Systems requires the card to return
certain status bytes in response to a specific condition. The card may generate
status bytes not listed in this table for error and warning conditions not specified in
the ICC Application Specification for Payment Systems

SW1 | SW2 Meaning

Normal processing
‘90’ ‘00" | Process completed (any other value for SW2 is RFU)

Warning processing

‘62’ ‘83" | State of non-volatile memory unchanged; selected file invalidated

‘63’ ‘00’ | State of non-volatile memory changed; authentication failed

‘63’ ‘Cx’_ | State of non-volatile memory changed; counter provided by X’ (from 0-15)
Checking errors

‘69’ ‘83" | Command not allowed; authentication method blocked

‘69’ ‘84’ | Command not allowed; referenced data invalidated

‘69’ ‘85" | Command not allowed; conditions of use not satisfied

‘BA’ ‘81" | Wrong parameter(s) P1 P2; function not supported
‘BA’ ‘82" | Wrong parameter(s) P1 P2; file not found
‘6A’ ‘83 | Wrong parameter(s) P1 P2; record not found

Table 1I-7 - Coding of Status Bytes SW1 SW2

The following values of SW1 SW2 are described in Part | of this specification as they
apply to the TPDU and are not returned to the APDU:

* ‘61xx: SW2 indicates the number of response bytes still available.
* ‘6Cxx’: Wrong length Le, SW2 indicates the exact length.

SW1 ='6x’ or ‘90’ denotes a normal, warning, or error condition coded according to
ISO/IEC 7816-4.

May 31, 1998 Part Il - Data Elements and Commands I-11

| When using transmission protocol T=1, for all commands having Le ='00’ the
| successful execution of the command is coded by '90 00’ or '61 La’. However, for
| readability, both response codes are referenced throughout the text as '90 00’ only.

Other values of SW1 returned by the ICC are not supported by Part Il.

= 0]
L
% « L & §| | x
O 2 <O
Q| O < | 6| w ElQ| O
110 |8 E| O alE|la|la
m — o [> =Z < (@) = [aa)] a'd
m o2 % w| = w =2 9| | >
Z Z | 9| W J |l Q| T | 20| 0| @
D z | d Z | E o | W | w| =
9 m L5 ||| £|5|W p Yiw
ylZ|lalElE|lT|+l0|Z|9 o | w
Q| X E() S| O (LB fﬁ - <Z,: 9(n | >
<k S| 372w |2 | % |y
| = Z | < X | w| =
= | = x| ¢ Ol E |l
> & W s = | £
[T L
<< 5|2 o
o
|| sw1 | sw2
90 [o0 |V [V [v [v v [V [v [v v [V [v [V [V
61 | 'La v v v v V|V
‘62" | ‘83 e
‘63 | ‘00’ /2
‘63 | ‘Cx 3
\/
‘69" | ‘83 Ve
‘69’ | ‘84’ J°
‘69" | ‘85’ V87 /8
‘6A’" | ‘81 v
‘A" | ‘82 J10
‘6A’ | ‘83 J1

Table 1I-8 - Allocation of Status Bytes
The following convention is used in the table:

V= Indicates normal processing
V¥= Allowed response code, for which a dedicated action shall be taken or
which has a special meaning for an EMV compliant application. The

meaning of the action is explained under the table

= If this response code is returned by the card, the terminal will
terminate the transaction

\/1 = See section 11-2.4.1.1 for appropriate processing.

11-12 Part Il - Data Elements and Commands May 31, 1998

\/2 = SW1 SW2 ='6300" means ‘Authentication failed’ for the EXTERNAL
AUTHENTICATE command.

\/3 = See section 11-2.4.12.5 and section 7.5.1 of the Integrated Circuit Card
Application Specification for Payment Systemsfor appropriate processing.

\/4 = See section 11-2.4.12.5 and section 7.5.1 of the Integrated Circuit Card
Application Specification for Payment Systemsfor appropriate processing.

\/5 = See section 7.5.1 of the ICC Application Specification for Payment Systemsfor
appropriate processing.

\/6 = See section 7.9 of the ICC Application Specification for Payment Systems for
appropriate processing.

\/7 = See section 8.3.2 of the ICC Application Specification for Payment Systems

\/8 = See section 7.1 of the ICC Application Specification for Payment Systemsand
section 1-2.2.1 of the ICC Terminal Specification for Payment Systems for
appropriate processing.

\/9 = See section 11-2.4.3.1 for appropriate processing.

\/10 = See section 11-2.4.11.5 for appropriate processing.

\/11 = See section 111-3.2 for appropriate processing.

If during the transaction processing as described in the ICC Application
Specification for Payment Systems, the card returns another value for SW1 SW2
than specified in Table 11-8, the transaction shall be terminated. An example is that
the transaction would be terminated if the application reads records in a file that
contains four records and the card returns SW1 SW2 = ‘6400’ in response to the
READ RECORD command for record 5 instead of SW1 SW2 = ‘6A83".

When using transmission protocol T=1, for all commands having Le = ‘00, the
successful execution of the command is coded by ‘90 00’ or ‘61 La’. However, for
readability, both response codes are referenced throughout the text as ‘90 00’ only.

If during the processing of the GET DATA command, defined in section 2.4.6, the
card returns an error condition, the terminal shall proceed as indicated in Section
7.6.3 of the ICC Application Specification for Payment Systems (for terminal velocity
checking) or in section 2.2.4.1 of the ICC Terminal Specification for Payment
Systems (for cardholder verification processing).

If during the processing of an issuer script command, as defined in section 7.10 of
the ICC Application Specification for Payment Systems, the card returns a warning
condition (SW1 SW2 = ‘62XX’ or ‘63xx’), the terminal shall continue with the next
command from the Issuer Script (if any).

2.2.6 Coding of RFU Data

The coding of data (bits and bytes) indicated as RFU and marked as X’ in the tables
of the specifications shall be set to zero unless otherwise stated.

May 31, 1998 Part Il - Data Elements and Commands 11-13

2.3 Logical Channels

A logical channel establishes and maintains the link between an application in the
terminal and an application in the card.

A card may support more than one logical channel but only the basic logical channel
is supported by this specification. This limits to one the number of concurrent
applications according to this specification.

2.4 Commands

This section describes the following APDU command-response pairs:

e« APPLICATION BLOCK (post-issuance command)

e« APPLICATION UNBLOCK (post-issuance command)
+ CARD BLOCK (post-issuance command)

« EXTERNAL AUTHENTICATE

« GENERATE APPLICATION CRYPTOGRAM

« GET CHALLENGE

« GET DATA

+ GET PROCESSING OPTIONS

« INTERNAL AUTHENTICATE

« PIN CHANGE/UNBLOCK (post-issuance command)
« READ RECORD

« SELECT

+ VERIFY

The post-issuance commands shall only be sent using script processing (see the ICC
Application Specification for Payment Systems) and secure messaging as specified in
Part 1V of this specification.

2.4.1 APPLICATION BLOCK Command-Response APDUs
2.4.1.1 Definition and Scope

The APPLICATION BLOCK command is a post-issuance command that invalidates
the currently selected application.

Following the successful completion of an APPLICATION BLOCK command:

* An invalidated application shall return the status bytes ‘Selected file invalidated’
(SW1 SW2 ='6283’) in response to a SELECT command.

* An invalidated application shall return only an AAC as AC in response to a
GENERATE AC command.

11-14 Part Il - Data Elements and Commands May 31, 1998

2.4.1.2 Command Message

The APPLICATION BLOCK command message is coded according to Table 11-9:

Code Value

CLA | '8C’ or ‘84’; coding according to the secure messaging
specified in Part IV of this specification

INS ‘1E

P1 ‘00’; all other values are RFU

P2 ‘00’; all other values are RFU

Lc Number of data bytes
Data | Message Authentication Code (MAC) data
component; coding according to the secure messaging
specified in Part 1V of this specification
Le Not present

Table 11-9 - APPLICATION BLOCK Command Message
2.4.1.3 Data Field Sent in the Command Message

The data field of the command message contains the MAC data component coded
according to the secure messaging format specified in Part 1V of this specification.

2.4.1.4 Data Field Returned in the Response Message
The data field of the response message is not present.
2.4.1.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000, independent whether the
application was already invalidated or not.

2.4.2 APPLICATION UNBLOCK Command-Response APDUs
2.4.2.1 Definition and Scope

The APPLICATION UNBLOCK command is a post-issuance command that
rehabilitates the currently selected application.

Following the successful completion of an APPLICATION UNBLOCK command, the
restrictions imposed by the APPLICATION BLOCK command are removed.

2.4.2.2 Command Message

The APPLICATION UNBLOCK command message is coded according to Table I1-
10.

May 31, 1998 Part Il - Data Elements and Commands 11-15

Code Value

CLA | '8C’ or ‘84’; coding according to the secure messaging
specified in Part 1V of this specification

INS ‘18’

P1 ‘00’; all other values are RFU

P2 ‘00’; all other values are RFU

Lc Number of data bytes
Data | MAC data component; coding according to the secure
messaging specified in Part 1V of this specification
Le Not present

Table 11-10 - APPLICATION UNBLOCK Command Message
2.4.2.3 Data Field Sent in the Command Message

The data field of the command message contains the MAC data component coded
according to the secure messaging format specified in Part 1V of this specification.

2.4.2.4 Data Field Returned in the Response Message
The data field of the response message is not present.
2.4.2.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000, independent whether the
application was invalidated or not.

2.4.3 CARD BLOCK Command-Response APDUs
2.4.3.1 Definition and Scope

The CARD BLOCK command is a post-issuance command that permanently
disables all applications in the ICC.

The CARD BLOCK command shall disable all applications in the ICC, including
applications that may be selected implicitly.

Following the successful completion of a CARD BLOCK command, all subsequent
SELECT commands shall return the status bytes ‘Function not supported’ (SW1
SW2 ='6A81’) and perform no other action.

2.4.3.2 Command Message

The CARD BLOCK command message is coded according to Table 11-11.

11-16 Part Il - Data Elements and Commands May 31, 1998

Code Value

CLA | '8C’ or ‘84’; coding according to the secure messaging
specified in Part 1V of this specification

INS ‘16’

P1 ‘00’; all other values are RFU

P2 ‘00’; all other values are RFU

Lc Number of data bytes
Data | MAC data component; coding according to the secure
messaging specified in Part 1V of this specification
Le Not present

Table II-11 - CARD BLOCK Command Message
2.4.3.3 Data Field Sent in the Command Message

The data field of the command message contains the MAC data component coded
according to the secure messaging format specified in Part 1V of this specification.

2.4.3.4 Data Field Returned in the Response Message
The data field of the response message is not present.
2.4.3.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000, independent of whether
the card was already blocked or not.

2.4.4 EXTERNAL AUTHENTICATE Command-Response APDUs

2.4.4.1 Definition and Scope

The EXTERNAL AUTHENTICATE command asks the application in the ICC to
verify a cryptogram.

The response from the ICC consists of returning the processing state of the
command.

2.4.4.2 Command Message

The EXTERNAL AUTHENTICATE command message is coded according to Table
11-12:

May 31, 1998 Part Il - Data Elements and Commands 1-17

Code Value
CLA ‘00’
INS ‘82’
P1 ‘00’
P2 ‘00’
Lc 8-16
Data Issuer Authentication Data
Le Not present

Table II-12 - EXTERNAL AUTHENTICATE Command Message
The reference of the algorithm (P1) of the EXTERNAL AUTHENTICATE command
is coded ‘00’, which means that no information is given. The reference of the
algorithm is known either before issuing the command or is provided in the data
field.
2.4.4.3 Data Field Sent in the Command Message

The data field of the command message contains the value field of tag ‘91’ coded as
follows:

« Mandatory first 8 bytes containing the cryptogram.

« Optional additional 1-8 bytes are proprietary.

2.4.4.4 Data Field Returned in the Response Message

The data field of the response message is not present.

2.4.4.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

2.4.5 GENERATE APPLICATION CRYPTOGRAM Command-
Response APDUs

2.4.5.1 Definition and Scope

The GENERATE AC command sends transaction-related data to the ICC, which
computes and returns a cryptogram. This cryptogram shall either be an Application
Cryptogram (AC) as specified in this specification or a proprietary cryptogram. In
both cases, the cryptogram shall be of a type specified in Table 11-13 (for more
details, see the ICC Application Specification for Payment Systems).

11-18 Part Il - Data Elements and Commands May 31, 1998

Type Meaning
Application Authentication Transaction declined
Cryptogram (AAC)
Application Authorisation Referral | Referral requested by the card

(AAR)

Authorisation Request Cryptogram | Online authorisation requested
(ARQC)

Transaction Certificate Transaction approved

(TC)

Table 11-13 - GENERATE AC Cryptogram Types
The cryptogram returned by the ICC may differ from that requested in the
command message according to an internal process in the ICC (as described in the
ICC Application Specification for Payment Systems).
2.4.5.2 Command Message

The GENERATE AC command message is coded according to Table 11-14:

Code Value
CLA |'80
INS ‘AE’
P1 Reference control parameter
(see Table 11-15)
P2 ‘00’
Lc var.
Data | Transaction-related data
Le ‘00’

Table II-14 - GENERATE AC Command Message

The reference control parameter of the GENERATE AC command is coded as shown
in Table 11-15:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning
0] o0 AAC
0|1 TC
1] o0 ARQC
1|1 RFU

X | X | X | X | X | X | RFU

Table I1-15 - GENERATE AC Reference Control Parameter
2.4.5.3 Data Field Sent in the Command Message

The content of the data field of the command message is coded according to the rules
for the data object list as defined in Section 11-1.4.

May 31, 1998 Part Il - Data Elements and Commands 11-19

2.4.5.4 Data Field Returned in the Response Message

The data field of the response message consists of a BER-TLV coded data object.
The coding of the data object shall be according to one of the following two formats.

 Format 1: The data object returned in the response message is a primitive data
object with tag equal to ‘80". The value field consists of the concatenation without
delimiters (tag and length) of the value fields of the data objects specified in Table
11-16:

Value Presence
Cryptogram Information Data
Application Transaction Counter (ATC)
Application Cryptogram (AC)
Issuer Application Data

OIS

Table II-16 - Format 1 GENERATE AC Response Message Data Field

« Format 2: The data object returned in the response message is a constructed
data object with tag equal to ‘77'. The value field may contain several BER-TLV
coded objects, but shall always include the Cryptogram Information Data, the
Application Transaction Counter and the cryptogram computed by the ICC
(either an AC or a proprietary cryptogram). The utilization and interpretation of
proprietary data objects which may be included in this response message are
outside the scope of these specifications.

For both formats, the Cryptogram Information Data returned by the GENERATE
AC response message is coded according to Table 11-17:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning

AAC

TC

ARQC

AAR

X X RFU

0 No advice required

1 Advice required
Reason/advice/referral code
No information given
Service not allowed

PIN Try Limit exceeded
Issuer authentication failed
Other values RFU

Rk O|0
= OO

X |00 |0|0O (X
X |k [P |O|O|X
X |k |O|FR|O|X

Table II-17 - Coding of Cryptogram Information Data

11-20 Part Il - Data Elements and Commands May 31, 1998

2.4.5.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000’

2.4.6 GET DATA Command-Response APDUs

2.4.6.1 Definition and Scope

The GET DATA command is used to retrieve a primitive data object not
encapsulated in a record within the current application.

The usage of the GET DATA command in this specification is limited to the retrieval
of the primitive data objects ATC (tag ‘9F36’), Last Online ATC Register (tag ‘9F13),
or PIN Try Counter (tag ‘9F17’) defined in Annex B, Table B-1 that are interpreted
by the application in the ICC.

2.4.6.2 Command Message

The GET DATA command message is coded according to Table 11-18:

Code Value
CLA ‘80’
INS ‘CA
P1 P2 ‘OF36’, ‘9F13’, or ‘9F17
Lc Not present
Data Not present
Le ‘00’

Table 11-18 - GET DATA Command Message
2.4.6.3 Data Field Sent in the Command Message
The data field of the command message is not present.
2.4.6.4 Data Field Returned in the Response Message

The data field of the response message contains the primitive data object referred to
in P1 P2 of the command message (in other words, including its tag and its length).

2.4.6.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

May 31, 1998 Part Il - Data Elements and Commands 11-21

2.4.7 GET PROCESSING OPTIONS Command-Response APDUs

2.4.7.1 Definition and Scope

The GET PROCESSING OPTIONS command initiates the transaction within the
ICC.

The response from the ICC consists of returning the Application Interchange Profile
(AIP) and the Application File Locator (AFL).

2.4.7.2 Command Message

The GET PROCESSING OPTIONS command message is coded according to Table
11-19:

Code Value
CLA | ‘80O
INS ‘A8’

P1 ‘00’; all other values are RFU

P2 ‘00’; all other values are RFU

Lc var.
Data | Processing Options Data Object List
(PDOL) related data
Le ‘00’

Table 11-19 - GET PROCESSING OPTIONS Command Message
2.4.7.3 Data Field Sent in the Command Message

The data field of the command message is a data object coded according to the
Processing Options Data Object List (PDOL) provided by the ICC, as defined in
section 11-1.4, and is introduced by the tag ‘83’. When the data object list is not
provided by the ICC, the length field of the template is set to zero. Otherwise, the
length field of the template is the total length of the value fields of the data objects
transmitted to the ICC.

2.4.7.4 Data Field Returned in the Response Message

The data field of the response message consists of a BER-TLV coded data object.
The coding of the data object shall be according to one of the following two formats.

 Format 1: The data object returned in the response message is a primitive data
object with tag equal to ‘80". The value field consists of the concatenation without
delimiters (tag and length) of the value fields of the Application Interchange
Profile (AIP) and the Application File Locator (AFL). The coding of the data
object returned in the response message is shown in Table 11-20:

11-22 Part Il - Data Elements and Commands May 31, 1998

| ‘80" | Length | Application Interchange Profile | AFL |

Table 11-20 - Format 1 GET PROCESSING OPTIONS Response Message Data Field

« Format 2: The data object returned in the response message is a constructed
data object with tag equal to ‘77'. The value field may contain several BER-TLV
coded objects, but shall always include the AIP and the AFL. The utilization and
interpretation of proprietary data objects which may be included in this response
message are outside the scope of these specifications.

The AIP specifies the application functions that are supported by the application in
the ICC and is coded according to the ICC Application Specification for Payment
Systems.

The AFL consists of the list without delimiters of files and related records that shall
be read according to the ICC Application Specification for Payment Systemsfor the
currently selected application.

2.4.7.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

2.4.8 INTERNAL AUTHENTICATE Command-Response APDUs
2.4.8.1 Definition and Scope

The INTERNAL AUTHENTICATE command initiates the computation of the
Signed Dynamic Application Data by the card using the challenge data sent from

the IFD and data and a relevant private key stored in the card.

The response from the ICC consists of returning the Signed Dynamic Application
Data to the terminal.

2.4.8.2 Command Message

The INTERNAL AUTHENTICATE command message is coded according to Table
11-21:

Code Value

CLA | ‘00

INS ‘88’

P1 ‘00’

P2 ‘00’

Lc Length of authentication-related data
Data | Authentication-related data

Le ‘00’

Table I1-21 - INTERNAL AUTHENTICATE Command Message

May 31, 1998 Part Il - Data Elements and Commands 11-23

The reference of the algorithm (P1) of the INTERNAL AUTHENTICATE command
is coded ‘00’, which means that no information is given. The reference of the
algorithm is known either before issuing the command or is provided in the data
field.

2.4.8.3 Data Field Sent in the Command Message

The data field of the command message contains the authentication-related data
proprietary to an application. It is coded according to the Dynamic Data
Authentication Data Object List (DDOL) as defined in Part IV of this specification.

2.4.8.4 Data Field Returned in the Response Message

The data field of the response message consists of a BER-TLV coded data object.
The coding of the data object shall be according to one of the following two formats.

 Format 1: The data object returned in the response message is a primitive data
object with tag equal to ‘80". The value field consists of the value field of the
Signed Dynamic Application Data as specified in Part 1V of this specification.

 Format 2: The data object returned in the response message is a constructed
data object with tag equal to '77’. The value field may contain several BER-TLV
coded objects, but shall always include the Signed Dynamic Application Data as
specified in Part IV of this specification. The utilization and interpretation of
proprietary data objects which may be included in this response message are
outside the scope of these specifications.

2.4.8.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000".

2.4.9 PIN CHANGE/UNBLOCK Command-Response APDUs
2.4.9.1 Definition and Scope

The PIN CHANGE/UNBLOCK command is a post-issuance command. Its purpose
is to provide the issuer the capability either to unblock the PIN or to simultaneously

change and unblock the reference PIN.

Upon successful completion of the PIN CHANGE/UNBLOCK command, the card
shall perform the following functions:

* The value of the PIN Try Counter shall be reset to the value of the PIN Try
Limit.

* If requested, the value of the reference PIN shall be set to the new PIN value.

11-24 Part Il - Data Elements and Commands May 31, 1998

The PIN data transmitted in the command, if present, shall be enciphered for
confidentiality.

Note: The reference PIN, which is stored within the card, is the one that is associated wi th the
application, and which the card uses to the check the Transaction PIN Data transmitted within the
VERIFY command.

2.4.9.2 Command Message

The PIN CHANGE/UNBLOCK command message is coded according to Table 11-22.

Code Value

CLA | ‘8C’ or ‘84’; coding according to the secure
messaging specified in Part 1V of this
specification

INS |24

P1 ‘00’

P2 ‘00, ‘01, or ‘02’

Lc Number of data bytes
Data | Enciphered PIN data component, if present,
and MAC data component; coding according to
the secure messaging specified in Part 1V of this
specification
Le Not present

Table 11-22 - PIN CHANGE/UNBLOCK Command Message

P2: If P2 is equal to ‘00, the reference PIN is unblocked and the PIN Try Counter
is reset to the PIN Try Limit. There is no PIN update, since the PIN
CHANGE/UNBLOCK command does not contain a new PIN value.
Any other value of P2 allowing PIN unblocking and/or PIN changing is out of
the scope of this specification and shall be described for each payment system
individually.

2.4.9.3 Data Field Sent in the Command Message

The data field of the command message contains the PIN data component, if

present, followed by the MAC data component coded according to the secure

messaging format specified in Part 1V of this specification.

2.4.9.4 Data Field Returned in the Response Message

The data field of the response message is not present.

2.4.9.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

May 31, 1998 Part Il - Data Elements and Commands 11-25

2.4.10 READ RECORD Command-Response APDUs
2.4.10.1 Definition and Scope

The READ RECORD command reads a file record in a linear file.
The response from the ICC consists of returning the record.
2.4.10.2 Command Message

The READ RECORD command message is coded according to Table 11-23:

Code Value
CLA | ‘00
INS ‘B2’
P1 Record number
P2 Reference control parameter (see
Table 11-24)
Lc Not present
Data | Not present
Le ‘00’

Table 11-23 - READ RECORD Command Message

Table 11-24 defines the reference control parameter of the command message:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning
X X X X X SFI
1 | 0| 0 |P1lisarecord number

Table 11-24 - READ RECORD Command Reference Control Parameter
2.4.10.3 Data Field Sent in the Command Message
The data field of the command message is not present.
2.4.10.4 Data Field Returned in the Response Message
The data field of the response message of any successful READ RECORD command

contains the record read. For SFls in the range 1-10, the record is a BER-TLV
constructed data object as defined in Annex C and coded as shown in Table 11-25:

| 700 | Length | Record Template |

Table 1I-25 - READ RECORD Response Message Data Field

The response message to READ RECORD for SFIs outside the range 1-10 is outside
the scope of this specification.

11-26

Part Il - Data Elements and Commands

May 31, 1998

2.4.10.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

2.4.11 SELECT Command-Response APDUs

2.4.11.1 Definition and Scope

The SELECT command is used to select the ICC PSE, DDF, or ADF corresponding
to the submitted file name or AID. The selection of an application is described in
Part 111 of this specification.

A successful execution of the command sets the path to the PSE, DDF, or ADF.

Subsequent commands apply to AEFs associated to the selected PSE, DDF, or ADF

using SFIs.

The response from the ICC consists of returning the FCI.

2.4.11.2 Command Message

The SELECT command message is coded according to Table 11-26:

Code Value
CLA |00
INS ‘AL
P1 Reference control parameter (see
Table 11-27)
P2 Selection options (see Table 11-28)
Lc ‘05-'10’
Data | File name
Le ‘00’

Table 11-26 - SELECT Command Message

Table 11-27 defines the reference control parameter of the SELECT command

message:

b8

b7

b6

b5

b4

0

0

0

b3 | b2 | b1

1

Meaning

Select by name

0o

Table 11-27 - SELECT Command Reference Control Parameter

| Table 11-27 defines the selection options P2 of the SELECT command message:

May 31, 1998

Part Il - Data Elements and Commands

1-27

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning

occurrence

0 | O | Firstoronly

1 0 | Next occurrence

Table 11-28 - SELECT Command Options Parameter

2.4.11.3 Data Field Sent in the Command Message

The data field of the command message contains the PSE name or the DF name or
the AID to be selected.

2.4.11.4 Data Field Returned in the Response Message

The data field of the response message contains the FCI specific to the selected PSE,
DDF, or ADF. The tags defined in Table 11-29 to Table 11-31 apply to this

specification. Additional tags returned in the FCI that are not described in this

specification shall be ignored.

Table 11-29 defines the FCI returned by a successful selection of the PSE:

Tag Value Presence
‘6F FCI Template M
‘84’ DF Name M
‘A5’ FCI Proprietary Template M
‘88’ SFI of the directory elementary file M
‘SF2D’ Language Preference ®)
‘OF1Y Issuer Code Table Index 0]
‘BFOC’ FCI Issuer Discretionary Data 0]

Table 11-29 - SELECT Response Message Data Field (FCI) of the PSE

Table 11-30 defines the FCI returned by a successful selection of a DDF:

Tag Value Presence
‘6F FCI Template M
‘84’ DF Name M
‘A5’ FCI Proprietary Template M
‘88 SFI of the directory elementary file M
‘BFOC’ FCI Issuer Discretionary Data 0

Table 11-30 - SELECT Response Message Data Field (FCI) of a DDF

Table 11-31 defines the FCI returned by a successful selection of an ADF:

11-28 Part Il - Data Elements and Commands May 31, 1998

Tag Value Presence
‘6F’ FCI Template M
‘84’ DF Name M
‘A%’ FCI Proprietary Template M
‘50’ Application Label @)
‘87’ Application Priority Indicator 0]
‘OF38’ PDOL ®)
‘5F2D’ Language Preference @)
‘OF11 Issuer Code Table Index ®)
‘OF12’ Application Preferred Name @)
‘BFOC’ FCI Issuer Discretionary Data ®)

Table 11-31 - SELECT Response Message Data Field (FCI) of an ADF
2.4.11.5 Processing State Returned in the Response Message
A successful execution of the command is coded by ‘9000’

ICC support for the selection of a DF file using only a partial DF name is not
mandatory. However, if the ICC does support partial name selection, it shall comply
with the following:

If the SELECT command having the coding of b2 and b1l set to ‘10’ (next) is repeated
with the same partial DF name by the terminal after a DF file has been successfully
selected, the card shall select a different DF file matching the partial name, if such
another DF file exists. Repeated issuing of the same command with no intervening
application level commands shall retrieve all such files, but shall retrieve no file
twice. After all matching DF files have been selected, repeating the same command
again shall result in no file being selected, and the card shall respond with SW1
SW2 = ‘6A82’ (file not found).

2.4.12 VERIFY Command-Response APDUs

2.4.12.1 Definition and Scope

The VERIFY command initiates in the ICC the comparison of the Transaction PIN
Data sent in the data field of the command with the reference PIN data associated
with the application. The manner in which the comparison is performed is
proprietary to the application in the ICC.

The VERIFY command applies when the Cardholder Verification Method (CVM)
chosen from the CVM List is an offline PIN, as described in the ICC Application
Specification for Payment Systems.

2.4.12.2 Command Message

The VERIFY command message is coded according to Table 11-32:

May 31, 1998 Part Il - Data Elements and Commands 11-29
Code Value
CLA | ‘00
INS ‘20°
P1 ‘00’
P2 Qualifier of the reference data (see Table 11-33)
Lc var.
Data | Transaction PIN Data
Le Not present

Table 11-32 - VERIFY Command Message

Table 11-33 defines the qualifier of the reference data (P2):

b8 | b7 | b6 | b5 | b4 | b3 | b2 | bl Meaning

0 0 0 0 0 0 0 0 | As defined in ISO/IEC 7816-4

1 0 0 0 0 0 0 0 | Plaintext PIN, format as defined below

1 0 0 0 0 X X X | RFU for this specification

1 0 0 0 1 0 0 0 | Enciphered PIN, format as defined in
section V-4

1 0 0 0 1 0 X X | RFU for this specification

1 0 0 0 1 1 X X | RFU for the individual payment
systems

1 0 0 1 X X X X | RFU for the issuer

Table 11-33 - VERIFY Command Qualifier of Reference Data (P2)

The processing of the VERIFY command in the ICC will be defined in combination
with the CVM rules as specified in the ICC Application Specification for Payment
Systems.

The plaintext offline PIN block shall be formatted as follows:

|CIN[P|P|P|[P|PF|PF|PIF|PIF|PIF|PF|PIF|PIF|F|F|

where
Name Value

C Control field Binary 2 (hex. 0010)

N PIN length 4-bit binary number with permissible values of hex.
0100 to hex. 1100

P PIN digit 4-bit field with permissible values of hex. 0000 to
hex. 1001

P/F | PIN/Hiller Determined by PIN length

F Filler 4-bit binary number with value of hex. 1111

P2 = ‘00" indicates that no particular qualifier is used. The processing of the
VERIFY command in the ICC should know how to find the PIN data
unambiguously.

11-30 Part Il - Data Elements and Commands May 31, 1998

2.4.12.3 Data Field Sent in the Command Message

The data field of the command message contains the value field of tag ‘99'.

2.4.12.4 Data Field Returned in the Response Message

The data field of the response message is not present.

2.4.12.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

When for the currently selected application the comparison between the Transaction
PIN Data and the reference PIN data performed by the VERIFY command fails, the
ICC shall return SW2 = ‘Cx’, where ‘X’ represents the number of retries still possible.
When the card returns ‘C0’, no more retries are left, and the CVM shall be blocked.

Any subsequent VERIFY command applied in the context of that application shall
then fail with SW1 SW2 = ‘6983".

2.4.13 GET CHALLENGE Command-Response APDUs

2.4.13.1 Definition and Scope

The GET CHALLENGE ommand is used to obtain an unpredictable number from
the ICC for use in a security-related procedure.

The challenge shall be valid only for the next issued command.

2.4.13.2 Command Message

The GET CHALLENGE command message is coded according to Table 11-32:

Code Value
CLA | ‘00

INS ‘84’

P1 ‘00’

P2 ‘00’

Lc Not present
Data | Not present
Le '00°

Table 1I-34 - GET CHALLENGE Command Message

May 31, 1998 Part Il - Data Elements and Commands 11-31

2.4.13.3 Data Field Sent in the Command Message
The data field of the command message is not present.
2.4.13.4 Data Field Returned in the Response Message

The data field of the response message contains an 8-byte unpredictable number
generated by the ICC.

2.4.13.5 Processing State Returned in the Response Message

A successful execution of the command is coded by ‘9000'.

Part Il

Application Selection

May 31, 1998 Part 11l - Application Selection -1

1. Overview of Application Selection

Application selection is the process performed immediately after the reset of the card
and prior to the first application function.

This section describes the application selection process from the standpoint of both
the card and the terminal. The logical structure of data and files within the card
that are required for the process is specified, after which the terminal logic using the
card structure is described.

The ICC and the terminal may support and use implicit selection, but it is not
described here as it is not useful in an interchange environment.

The application selection process described in this section is the process by which the
terminal uses data in the ICC according to protocols defined herein to determine the
terminal program and the ICC application to be used in processing a transaction.
The process is described in two steps:

1. Create a list of ICC applications that are supported by the terminal. (This list is
referred to below using the name ‘candidate list.”) This process is described in
section 111-3.

2. Select the application to be run from the list generated above. This process is
described in section 111-4.

It is the intent of this part of the specification to describe the necessary information
in the card and two terminal selection algorithms that yield the correct results.
Other terminal selection algorithms that yield the same results are permitted in
place of the selection algorithms described here.

A payment system application is comprised of the following:
* Aset of files in the ICC providing data customised by the issuer.
« Data in the terminal provided by the acquirer or the merchant.

* An application protocol agreed upon by both the ICC and the terminal.

Applications are uniquely identified by AIDs conforming to ISO/IEC 7816-5 (see
section 111-2.13).

The techniques chosen by the payment systems and described herein are designed to
meet the following key objectives:

» Ability to work with ICCs with a wide range of capabilities.

» Ability for terminals with a wide range of capabilities to work with all ICCs
supporting payment system applications according to this specification.

-2 Part Ill - Application Selection May 31, 1998

¢ Conformance with ISO standards.

» Ability of ICCs to support multiple applications, not all of which need to be
payment system applications.

» Ability for ICCs to provide multiple sets of applications to be supported by a
single terminal program. (For example, a card may contain multiple credit/debit
applications, each representing a different type or level of service or a different
account).

* As far as possible, provide the capability for applications conforming with this
specification to co-reside on cards with presently existing applications.

* Minimum overhead in storage and processing.
» Ability for the issuer to optimise the selection process.

The set of data that the ICC contains in support of a given application is defined by an
ADF selected by the terminal using a SELECT command and an AFL returned by the
ICC in response to a GET PROCESSING OPTIONS command.

2. Data in the ICC Used for Application Selection
2.1 Coding of Payment System Application Identifier

The structure of the AID is according to ISO/IEC 7816-5 and consists of two parts:

1. A Registered Application Provider Identifier (RID) of 5 bytes, unique to an
application provider and assigned according to ISO/IEC 7816-5.

2. An optional field assigned by the application provider of up to 11 bytes. This field
is known as a Proprietary Application Identifier Extension (PI1X) and may contain
any 0-11 byte value specified by the provider. The meaning of this field is defined
only for the specific RID and need not be unique across different RIDs.

Additional ADFs defined under the control of other application providers may be
present in the ICC but shall avoid duplicating the range of RIDs assigned to
payment systems. Compliance with ISO/IEC 7816-5 will assure this avoidance.

2.2 Structure of the Payment Systems Environment

The Payment Systems Environment (PSE) begins with a Directory Definition File
(DDF) given the name ‘1PAY.SYS.DDFO01'. The presence of this DDF in the ICC is
optional but, if present, shall comply with this specification. If it is present, this
DDF is mapped onto a DF within the card, which may or may not be the MF. As
with all DDFs, this DDF shall contain a Payment Systems Directory. The FCI of
this DDF shall contain at least the information defined for all DDFs in Part Il and,

May 31, 1998 Part 11l - Application Selection -3

optionally, the Language Preference (tag ‘'5F2D’") and the Issuer Code Table Index
(tag ‘9F11).

The Language Preference and Issuer Code Table Index are optional data objects
that may occur in two places: the FCI of the PSE and the FCI of ADF files. If these
data objects exist, they shall exist in both places, and shall have the identical values
in all occurrences. The terminal may use the values from either location.?

The directory attached to this initial DDF contains entries for ADFs that are

formatted according to this specification, although the applications defined by those
ADFs may or may not conform to this specification. The directory may also contain
entries for other payment system’s DDFs, which shall conform to this specification.

The directory is not required to have entries for all DDFs and ADFs in the card, and
following the chain of DDFs may not reveal all applications supported by the card.
However, if the PSE exists, only applications that are revealed by following the
chain of DDFs beginning with the initial directory can be assured of international
interoperability.

See Annex D for examples of the internal logic structure of an ICC containing the
PSE.

2.3 Coding of a Payment System’s Directory

A Payment System’s Directory (hereafter referred to as simply a directory) is a linear
EF file identified by an SFI in the range 1 to 10. The SFI for the directory is contained
in the FCI of the DDF to which the directory is attached. The directory is read using
the READ RECORD command as defined in Part Il of this specification. A record may
have several entries, but a single entry shall always be encapsulated in a single record.

Records in the Payment Systems Directory conform to all other requirements in this
specification. Each record is a constructed data object, and the value field is
comprised of one or more directory entries as described below. Each record is
formatted as shown in Table I111-1:

9 A terminal building a candidate list using the process described in section 3.2 will
encounter the values specified in the FCI of the PSE and will not see the values
specified in the FCI of the ADF until the application to be run has been chosen. A
terminal building the candidate list using the process described in section 3.3 will
encounter the values specified in the FCI of the ADFs. To ensure consistent
interface to the cardholder, the values must be the same.

-4 Part 11l - Application Selection May 31, 1998
Tag | Data Tag | Length Directory Tag | Length Directory
70’ Length | ‘61" | of entry 1 ‘61" | of entry n

(L) directory | (ADF or directory | (ADF or
entry 1 DDF) entry n DDF)

Table IlI-1 - PSE Directory Record Format

Each entry in a Payment Systems Directory is the value field of an Application

Template (tag ‘61") and contains the information according to Table 111-2 or Table 111-3.

If any data objects that are not encapsulated in an Application Template (tag ‘61’)

appear in the directory record or any data objects other than those listed in Table 111-2

or Table 111-3 appear in a directory entry they shall be ignored.

Tag Length Value Presence
‘9D’ 5-16 DDF Name M
‘73 var. Directory Discretionary Template Q10
Table IlI-2 - DDF Directory Entry Format
Tag Length Value Presence
‘4F 5-16 ADF Name (AID) M
‘50’ 1-16 Application Label M
‘OF12’ 1-16 Application Preferred Name @)
‘87 1 Application Priority Indicator (see Table (@)
11-)
‘73 var. Directory Discretionary Template Q10
Table IlI-3 - ADF Directory Entry Format
b8 | b7-b5 | b4-bl Definition
1 Application cannot be selected without confirmation of
cardholder
0 Application may be selected without confirmation of
cardholder
XXX RFU
0000 No priority assigned
XXXX Order in which the application is to be listed or selected,
(except ranging from 1-15, with 1 being highest priority
0000)
Table llI-4 - Format of Application Priority Indicator

10 Other data objects not relevant to this specification may appear in this constructed data object.

May 31, 1998 Part 11l - Application Selection -5

2.4 Coding of Other Directories

Each directory in an ICC is contained by a separate DDF. DDFs and directories in
the card are optional, but there is no defined limit to the number that may exist.
Each directory is located by a Directory SFI data object which must be contained in
the FCI of the DDF (see Part Il for the SELECT command). The low order five bits
of the Directory SFI contain the SFI to be used in READ RECORD commands for
reading the directory. The SFI shall be valid for reading the directory when the
DDF containing the directory is the current file selected.

All directories, including the initial directory, have the same format, as described in
section 111-2.3.

3. Building the Candidate List

The terminal shall maintain a list of applications supported by the terminal and

their AIDs. This section describes two procedures for determining which of those
applications is to be run. If the card contains no PSE, the procedure described in
section 3.3 must be followed.

3.1 Matching Terminal Applications to ICC Applications

The terminal determines which applications in the ICC are supported by comparing
the AIDs for applications in the terminal with AIDs for applications within the ICC.
In some cases, the terminal supports the ICC application only if the AID in the
terminal has the same length and value as the AID in the ICC. This case limits the
ICC to at most one matching ADF-.

In other cases, the terminal supports the ICC application if the AID in the ICC
begins with the entire AID kept within the terminal. This allows the ICC to have
multiple ADFs matching the terminal application by adding unique information to
the AID used by each of the ADFs. If the card has only one ADF matching the
terminal AID, it should identify that ADF with the exact AID known to the
terminal. If the ICC has multiple ADFs supported by a single terminal AID, the
following requirements must be met by the ICC:

e The ICC must support partial name selection as described in Part Il of this
specification (see SELECT command).

e All of the matching AIDs in the ICC must be distinguished by adding unique
data to the PIX. None of the ICC AIDs shall be the same length as the AID in
the terminal.

For each of the AIDs within the list of applications supported by the terminal, the
terminal shall keep an indication of which matching criterion to use.

I1-6 Part Ill - Application Selection May 31, 1998

3.2 Using the Payment Systems Directories

If a terminal chooses to support the Payment System directory, it shall follow the
procedure described in this section to determine the applications supported by the
card. Figure Il1-1 is a flow diagram of the logic described here.

The steps the terminal takes to use the directories are as follows:

1. The terminal begins with an explicit selection of the Payment Systems
Environment using a SELECT command as described in Part 11 and a file name
of 1PAY.SYS.DDFO1'. This establishes the payment systems environment and
makes the initial directory accessible.

If there is no PSE in the ICC, the ICC shall return ‘6A82’ (‘File not found’) in
response to the SELECT command for the PSE. In this case, the terminal shall
use the list of applications method described in section 3.3.

If the ICC returns SW1 SW2 other than ‘9000’ or ‘6A82’ to the SELECT
command for the PSE, the terminal shall terminate the card session.

2. The terminal reads all the records in the directory beginning with record number
1 and continuing with successive records until the card returns SW1 SW2 =
‘6A83’, which indicates that the record number requested does not exist. (The
card must return ‘6A83’ if the record number in the READ RECORD command is
greater than the number of the last record in the file). If the card returns SW1
SW2 = '6A83’ in response to a READ RECORD for record number 1, no directory
entries exist, and step 6 (below) applies.

For each record, the terminal begins with the first entry and processes each
entry in turn as described in steps 3 through 5.

3. If the entry is for an ADF and the ADF name matches one of the applications
supported by the terminal as defined in section 3.1, the application joins the
‘candidate list’ for final application selection.

4. If the entry is for a DDF the terminal selects the DDF indicated using the DDF
name. Using the Directory SFI from the FCI of the selected DDF, the directory
is read and processed according to steps 2 through 5, after which the terminal
resumes processing the previously interrupted directory at the point of
interruption.

5. When the terminal completes the list in the first directory, all ADFs that can be
found by this procedure have been determined. The search and the candidate
list are complete. The terminal continues processing as described in section I11-
4.

6. If no directory entries exist, the terminal may know other ways to find
proprietary applications within the card (but this is outside the scope of this

May 31, 1998 Part 11l - Application Selection -7

specifications) or may apply the selection technique using a list of AIDs as
described in section 3.2.

-8

Part Il - Application Selection

May 31, 1998

Begin
Application
Selection

erminal
supports
PSE?

Y

A 4

Select DFNAME =
"1PAY.SYS.DDFO01"

A*

Get SFI for Dir from
FCI

v

Set record number
to 1 for next read

If the terminal supports
Implicit Selection, it is
performed prior to this start

Selection
from
Terminal List

See Figure 111-2

v

Read directory
record

Record
found?

Get first entry from
record

entry on dir

Get prev directory
from stack

v

Interrupt current
directory & place
resumption
information on stack

[N

Is it an ADF?

<

L 4

Get DDFNAME
from entry

v

SELECT new
DDF

I

Y

Is it
supported?

Add to candidate list

Resume
processing prev
directory

entry in this
record?

Get next entry

Incr record
number for next
read by 1

Figure llI-1 - Terminal Logic Using Directories

May 31, 1998 Part 11l - Application Selection -9

3.3 Using a List of AIDs

If the number of applications supported by a terminal is small or the card contains
no PSE, the terminal uses a list of applications that it supports to build the
candidate list. This procedure is shown in Figure 111-2. The terminal performs the
following steps for each AID in its list:

1. The terminal issues a SELECT command using the AID in the terminal list as
the file name.

2. If the SELECT command fails because the card is blocked or the command is not
supported by the ICC (SW1 SW2 = ‘6A81’), the terminal terminates the card
session.

If the SELECT command is successful but the application is blocked (SW1 SW2
='6283), the terminal proceeds to step 3 without adding the DENAME to the
candidate list.

If the SELECT command is successful (SW1 SW2 = ‘'9000’), the terminal adds
the DFNAME from the FCI of the selected file to the candidate list and proceeds
to step 3.

If the response from the ICC is anything else, the terminal proceeds back to step
1 using the next AID in the list. If there are no more AIDs in the list, the
candidate list is complete, and the terminal proceeds as specified in section 111-4.

3. The terminal checks for the possibility of multiple occurrences of the application
in the card by comparing the AID in the terminal list to the DEFNAME in the FCI
of the selected ADF. Two possibilities exist:

a. The terminal AID is the same as the DFNAME and they have the same
length. In this case, there can be no other occurrences of the application in the
ICC (see restriction in section 2.1). The terminal proceeds to step 1 using the
next AID in its list.

or

b. The DFNAME is longer than the AID in the terminal, but they are identical
up to and including the last character in the terminal AID. In this case, there
may be multiple applications in the ICC matching this terminal AID. The
terminal repeats the SELECT command using the same command data, but
changes P2 in the command to ‘02’ (‘select next’).

If the 1CC does not support the ‘next’ option on the SELECT command, the ICC
shall return SW1 SW2 = '6A81 (‘Wrong parameters P1-P2 - Function not
supported’). In this case, the card cannot have multiple occurrences of the
application, and the terminal proceeds to step 1 using the next AID in its list. If
the ICC returns anything else, the terminal proceeds to step 2.

11-10

Part 11l - Application Selection

May 31, 1998

Once all applications supported by the terminal have been processed as specified
above, the candidate list is complete. The terminal proceeds as specified in section

11-4.

Selection
from
Terminal List

Get first Terminal
AID

v

Select using
DFNAME =
Terminal AID

Application
blocked?

Get DFNAME
from FCI and add
it to candidate list

An exact match (including
length) should only occur if there
is only one application in the ICC
for that Terminal AID. If they do
not match, it can only be a result
of Partial Name Selection. N

Mame in F
= Terminal
AID?

Card y. Terminate session
blocked?
N

Is there
another
erminal AID,

Y

v

SELECT NEXT
with same
DFNAME

Get next terminal

AID

|

Figure IlI-2 - Using the List of Applications in the Terminal

May 31, 1998 Part Ill - Application Selection -11

3.4 Final Selection

Once the terminal determines the list of mutually supported applications, it
proceeds as follows:

1.

2.

If there are no mutually supported applications, the transaction is terminated.

If there is only one mutually supported application, the terminal checks b8 of the
Application Priority Indicator for that application. If b8 ='0’, the terminal
selects the application. If b8 = ‘1" and the terminal provides for confirmation by
the cardholder, the terminal requests confirmation and selects the application if
the cardholder approves. If the terminal does not provide for confirmation by the
cardholder, or if the terminal requests confirmation and the cardholder does not
approve, the terminal terminates the session.

If multiple applications are supported, the terminal may offer a selection to the
cardholder as described in step 4, or make the selection itself as described in step
5. Step 4 is the preferred method.

If a list is presented to the cardholder, it shall be in priority sequence, with the
highest priority application listed first. If there is no priority sequence specified
in the card, the list should be in the order in which the applications were
encountered in the card, unless the terminal has its own preferred order. The
same applies where duplicate priorities are assigned to multiple applications or
individual entries are missing the Application Priority Indicator; that is, in this
case, the terminal may use its own preferred order or display the duplicate
priority or nonprioritised applications in the order encountered in the card.

The terminal may select the application without cardholder assistance. In this
case, the terminal shall select the highest priority application from the list of
mutually supported applications, except that if the terminal does not provide for
confirmation of the selected application, applications prohibiting such selection
(b8 =1’ in the Application Priority Indicator) shall be excluded from possible
selection.

Once the application to be run is determined by the terminal or by the cardholder,
the application shall be selected. A SELECT command coded according to Part 11
shall be issued by the terminal for the application using the ADF Name field (if the
directories were read) or the DFNAME field from the FCI (if the list method was
used) found during the building of the candidate list. If the command returns other
than ‘9000’ in SW1 SW2, the application shall be removed from the candidate list,
and processing shall resume at step 1. The terminal shall inform the cardholder of
the action taken, if appropriate.

l-12 Part Il - Application Selection May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

Part IV

Security Aspects

May 31, 1998 Part IV - Security Aspects V-1

1. Static Data Authentication

Static data authentication is performed by the terminal using a digital signature
based on public key techniques to confirm the legitimacy of critical ICC-resident
static data identified by the AFL. This detects unauthorised alteration of data after
personalisation.

Static data authentication requires the existence of a certification authority, which
is a highly secure cryptographic facility that ‘signs’ the issuer’s public keys. Every
terminal conforming to this specification shall contain the appropriate certification
authority's public key(s) for every application recognised by the terminal. This
specification permits multiple AIDs to share the same ‘set’ of certification authority
public keys. The relationship between the data and the cryptographic keys is shown
in Figure 1V-1.

(| ssuer) (Certification Authority)

Distributed to Acquirer
Private Key Public Key Private Key Public Key (Resides in Terminal)
(Issuer) (Issuer) (CA) (CA)
S PI SCA PCA
P, certified
with Sg,
y
-
IC Card o) IC Terminal
< Communication between |C Card and Terminal >
Terminal :

Card providesto terminal :
- B, certified by Certification Authority
- Card datawith digital signature

- Uses P, to verify that the Issuer’s, P
was certified by the CA

- Uses Pto verify the digital signature
of the card data

Figure IV-1 - Diagram of Static Data Authentication

ICCs that support static data authentication shall contain the following data
elements:

» Certification Authority Public Key Index: This one-byte data element contains a
binary number that indicates which of the application’s certification authority
public keys and its associated algorithm that reside in the terminal is to be used

V-2 Part IV - Security Aspects May 31, 1998

with this ICC.

* Issuer Public Key Certificate: This variable-length data element is provided by
the appropriate certification authority to the card issuer. When the terminal
verifies this data element, it authenticates the Issuer Public Key plus additional
data as described in section 1V-1.3.

» Signed Static Application Data: A variable-length data element generated by
the issuer using the private key that corresponds to the public key authenticated
in the Issuer Public Key Certificate. It is a digital signature covering critical
ICC-resident static data elements, as described in section 1V-1.4.

* Issuer Public Key Remainder: A variable length data element. Its presence in
the ICC is optional. See section 1V-1.1 for further explanation.

* Issuer Public Key Exponent: A variable length data element provided by the
issuer. See section 1V-1.1 for further explanation.

To support static data authentication, each terminal shall be able to store multiple
certification authority public keys and shall associate with each such key the key-
related information to be used with the key (so that terminals can in the future
support multiple algorithms and allow an evolutionary transition from one to
another). The terminal shall be able to locate any such key (and the key-related
information) given the RID and Certification Authority Public Key Index as
provided by the ICC.

Static data authentication shall use a reversible algorithm as specified in Annex
E2.1 and Annex F2. Section IV-1.1 contains an overview of the keys and certificates
involved in the static data authentication process, and sections 1V-1.2 to 1V-1.4
specify the three main steps in the process, namely

* Retrieval of the Certification Authority Public Key by the terminal.

* Retrieval of the Issuer Public Key by the terminal.

» Verification of the Signed Static Application Data by the terminal.

1.1 Keys and Certificates

To support static data authentication, an ICC shall contain the Signed Static
Application Data, which is signed with the Issuer Private Key. The Issuer Public
Key shall be stored on the ICC with a public key certificate.

The bit length of all moduli shall be a multiple of 8, the leftmost bit of its leftmost
byte being 1. All lengths are given in bytes.

May 31, 1998 Part IV - Security Aspects V-3

The signature scheme specified in Annex E2.1 is applied to the data specified in
Table 1V-1 using the Certification Authority Private Key Sca in order to obtain the
Issuer Public Key Certificate.

The public key pair of the certification authority has a public key modulus of Nca
bytes, where Nca < 248. The Certification Authority Public Key Exponent shall be
equal to 2, 3, or 216 + 1.

The signature scheme specified in Annex E2.1 is applied to the data specified in
Table 1V-2 using the Issuer Private Key S in order to obtain the Signed Static
Application Data.

The public key pair of the issuer has an Issuer Public Key Modulus of N bytes,
where Ni < 248 and N1 < Nca. If Ni > (Nca — 36), the Issuer Public Key Modulus is
split into two parts, namely one part consisting of the Nca — 36 most significant
bytes of the modulus (the Leftmost Digits of the Issuer Public Key) and a second
part consisting of the remaining Ni — (Nca — 36) least significant bytes of the
modulus (the Issuer Public Key Remainder). The Issuer Public Key Exponent shall
be equal to 2, 3, or 216 + 1.

All the information necessary for static data authentication is specified in Table 1V-3
and stored in the ICC. With the exception of the RID, which can be obtained from
the AID, this information may be retrieved with the READ RECORD command. If
any of this data is missing, static data authentication has failed.

V-4 Part IV - Security Aspects May 31, 1998
Field Name Length Description Format
Certificate Format 1 Hex. value ‘02’ b
Issuer 4 Leftmost 3-8 digits from the Primary cn 8
Identification Account Number (PAN) (padded to the
Number right with hex. ‘F’s)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the certification
authority
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the digital
signature scheme!?
Issuer Public Key 1 Identifies the digital signature b
Algorithm algorithm to be used with the Issuer
Indicator Public Key?
Issuer Public Key 1 Identifies the length of the Issuer b
Length Public Key Modulus in bytes
Issuer Public Key 1 Identifies the length of the Issuer b
Exponent Length Public Key Exponent in bytes
Issuer Public Key Nca — If Ni < Nca — 36, this field consists of b
or Leftmost Digits 36 the full Issuer Public Key padded to
of the Issuer Public the right with Nca — 36 — N bytes of
Key value ‘BB’
If Ni > Nca — 36, this field consists of
the Nca — 36 most significant bytes of
the Issuer Public Key??
Issuer Public Key Oor Ni | This field is only present if Ni > Nca — b
Remainder —Nca | 36 and consists of the Ni — Nca + 36
+ 36 least significant bytes of the Issuer
Public Key.
Issuer Public Key lor3 Issuer Public Key Exponent equal to 2, b

Exponent

3,0r 2% +1

Table IV-1 - Issuer Public Key Data to be Signed by the Certification Authority
(i.e., input to the hash algorithm)

11 See Annex F for specific values assigned to approved algorithms.
12 As can be seen in Annex E2.1, Nca - 22 bytes of the data signed are retrieved from the signature.
Since the length of the first through the eighth data elements in Table V-1 is 14 bytes, there are Nca
— 22 - 14 = Nca - 36 bytes remaining in the signature to store the Issuer Public Key Modulus.

May 31, 1998 Part IV - Security Aspects V-5
Field Name Length Description Format
Signed Data 1 Hex. value ‘03 b
Format
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the digital
signature scheme!?
Data 2 Issuer-assigned code b
Authentication
Code
Pad Pattern N1 - 26 | Pad pattern consisting of Ni — 26 b
bytes of value ‘BB™*®
Static Data to be var. Static data to be authenticated as -
Authenticated specified in the ICC Application
Specification for Payment Systems
Table IV-2 - Static Application Data to be Signed by the Issuer
(i.e., input to the hash algorithm)
Tag Length Value Format
- 5 Registered Application Provider Identifier (RID) b
‘8F’ 1 Certification Authority Public Key Index b
‘90’ Nca Issuer Public Key Certificate b
‘92’ Ni — Nca Issuer Public Key Remainder, if present b
+ 36
‘OF32’ lor3 Issuer Public Key Exponent b
‘93’ NI Signed Static Application Data b
- var. Static data to be authenticated as specified in the -
ICC Application Specification for Payment
Systems

Table IV-3 - Data Objects Required for Static Data Authentication

1.2 Retrieval of the Certification Authority Public Key

The terminal reads the Certification Authority Public Key Index. Using this index

and the RID, the terminal shall identify and retrieve the terminal-stored

Certification Authority Public Key Modulus and Exponent and the associated key-
related information, and the corresponding algorithm to be used. If the terminal
does not have the key stored associated with this index and RID, static data
authentication has failed.

13 As can be seen in Annex E2.1, Ny — 22 bytes of the data signed are retrieved from the signature.
Since the first through the third data elements in Table V-2 total 4 bytes, there are Ny —22 -4 =N,
— 26 bytes left for the data to be stored in the signature.

V-6

Part IV - Security Aspects

May 31, 1998

1.3 Retrieval of the Issuer Public Key

1. If the Issuer Public Key Certificate has a length different from the length of the
Certification Authority Public Key Modulus obtained in the previous section,
static data authentication has failed.

2. In order to obtain the recovered data specified in Table 1V-4, apply the recovery
function specified in Annex E2.1 to the Issuer Public Key Certificate using the
Certification Authority Public Key in conjunction the corresponding algorithm. If
the Recovered Data Trailer is not equal to ‘BC’, static data authentication has

failed.

Field Name Length Description Format
Recovered Data 1 Hex. value ‘6A’ b
Header
Certificate Format 1 Hex. value ‘02’ b
Issuer ldentification 4 Leftmost 3-8 digits from the PAN cn 8
Number (padded to the right with hex. ‘F’s)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the

certification authority
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the
digital signature scheme?!!
Issuer Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the Issuer
Public Key?
Issuer Public Key 1 Identifies the length of the Issuer b
Length Public Key Modulus in bytes
Issuer Public Key 1 Identifies the length of the Issuer b
Exponent Length Public Key Exponent in bytes
Issuer Public Key or Nca-— If Ni < Nca — 36, this field consists of b
Leftmost Digits of 36 the full Issuer Public Key padded to
the Issuer Public Key the right with Nca — 36 — N bytes of
value ‘BB’
If Ni > Nca — 36, this field consists of
the Nca — 36 most significant bytes
of the Issuer Public Key??
Hash Result 20 Hash of the Issuer Public Key and its b
related information
Recovered Data 1 Hex. value ‘BC’ b

Trailer

Table IV-4 - Format of the Data Recovered from the Issuer Public Key Certificate

May 31, 1998 Part IV - Security Aspects V-7

3. Check the Recovered Data Header. If it is not ‘6A’, static data authentication has
failed.

4. Check the Certificate Format. If it is not ‘02’, static data authentication has
failed.

5. Concatenate from left to right the second to the tenth data elements in Table 1V-4
(that is, Certificate Format through Issuer Public Key or Leftmost Digits of the
Issuer Public Key), followed by the Issuer Public Key Remainder (if present) and
finally the Issuer Public Key Exponent.

6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
to the result of the concatenation of the previous step to produce the hash result.

7. Compare the calculated hash result from the previous step with the recovered
Hash Result. If they are not the same, static data authentication has failed.

8. Verify that the Issuer Identification Number matches the leftmost 3-8 PAN digits
(allowing for the possible padding of the Issuer Identification Number with
hexadecimal ‘F’s). If not, static data authentication has failed.

9. Verify that the last day of the month specified in the Certificate Expiration Date
is equal to or later than today's date. If the Certificate Expiration Date is earlier
than today's date, the certificate has expired, in which case static data
authentication has failed.

10.Verify that the concatenation of RID, Certification Authority Public Key Index,
and Certificate Serial Number is valid. If not, static data authentication has
failed!.

11.1f the Issuer Public Key Algorithm Indicator is not recognised, static data
authentication has failed.

12.1f all the checks above are correct, concatenate the Leftmost Digits of the Issuer
Public Key and the Issuer Public Key Remainder (if present) to obtain the Issuer
Public Key Modulus, and continue with the next steps for the verification of the
Signed Static Application Data.

1.4 Verification of the Signed Static Application Data

1. If the Signed Static Application Data has a length different from the length of the
Issuer Public Key Modulus, static data authentication has failed.

2. In order to obtain the Recovered Data specified in Table 1V-5, apply the recovery
function specified in Annex E2.1 on the Signed Static Application Data using the

14 This step is optional and is to allow the revocation of the Issuer Public Key Certificate against a list
that may be kept by the terminal.

V-8

Part IV - Security Aspects

May 31, 1998

Issuer Public Key in conjunction the corresponding algorithm. If the Recovered

Data Trailer is not equal to ‘BC’, static data authentication has failed.

Field Name Length Description Format
Recovered Data 1 Hex. value ‘6A’ b
Header
Signed Data 1 Hex. value ‘03 b
Format
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the digital
signature scheme!?

Data 2 Issuer-assigned code b

Authentication

Code

Pad Pattern Ni —26 | Pad pattern consisting of Ni — 26 bytes b
of value '‘BB*®

Hash Result 20 Hash of the Static Application Data to b
be authenticated

Recovered Data 1 Hex. value ‘BC’ b

Trailer

Table IV-5 - Format of the Data Recovered from the Signed Static Application Data

3. Check the Recovered Data Header. If it is not ‘6A’, static data authentication has

failed.

4. Check the Signed Data Format. If it is not ‘03’, static data authentication has

failed.

5. Concatenate from left to right the second to the fifth data elements in Table 1V-5
(that is, Signed Data Format through Pad Pattern), followed by the static data to
be authenticated as specified in the ICC Application Specification for Payment

Systems.

6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
to the result of the concatenation of the previous step to produce the hash result.

7. Compare the calculated hash result from the previous step with the recovered
Hash Result. If they are not the same, static data authentication has failed.

If all of the above steps were executed successfully, static data authentication was

successful.

May 31, 1998 Part IV - Security Aspects V-9

2. Dynamic Data Authentication

Dynamic data authentication is performed by the terminal using a digital signature
based on public key techniques to authenticate the ICC, and confirm the legitimacy
of critical ICC-resident data identified by the ICC dynamic data and data received
from the terminal identified by the Dynamic Data Authentication Data Object List
(DDOL). This precludes the counterfeiting of any such card.

Dynamic data authentication requires the existence of a certification authority, a
highly secure cryptographic facility that ‘signs’ the Issuer’'s Public Keys. Every
terminal conforming to this specification shall contain the appropriate certification
authority's public key(s) for every application recognised by the terminal. This
specification permits multiple AIDs to share the same ‘set’ of certification authority
public keys. The relationship between the data and the cryptographic keys is shown
in Figure 1V-2.

(_ issuer) (Certification Authority) (_ Acquirer)

]] Distributed to Acquirer
Private Key | | Public Key Private Key | | Public Key PrivateKey | | Public Key (Resides in Terminal)
(IC Card) (IC Card) (I'ssuer) (Issuer) (CA) (CA)
SC PIC S P| SCA PCA
Py certified | -g— ! P certified | o |
with S, with Sea
\ \J

-
ICCard J —) IC Terminal

- Communi cation between | C Card and Terminal >

Terminal :

- Uses P, to verify that the Issuer’'s, P
was certified by the CA

- Uses P to verify that the Card’s P
was certified by the Issuer

Card providesto terminal :

- P certified by Issuer

- P, certified by Certfication Authority

- Card and terminal dynamic data with digita signature

- Uses R to verify the digital signature
of the card data

Figure IV-2 - Diagram of Dynamic Data Authentication

ICCs that support dynamic data authentication shall contain the following data
elements:

» Certification Authority Public Key Index: This one-byte data element contains a
binary number that indicates which of the application’s certification authority

IV-10 Part IV - Security Aspects May 31, 1998

public keys and its associated algorithm that reside in the terminal is to be used
with this ICC.

* Issuer Public Key Certificate: This variable-length data element is provided by
the appropriate certification authority to the card issuer. When the terminal
verifies this data element, it authenticates the Issuer Public Key plus additional
data as described in section 1V-2.3.

» ICC Public Key Certificate: This variable-length data element is provided by the
issuer to the ICC. When the terminal verifies this data element, it authenticates
the ICC Public Key plus additional data as described in section 1V-2.4.

* Issuer Public Key Remainder: A variable-length data element. See section IV-
2.1 for further explanation.

» Issuer Public Key Exponent: A variable-length data element provided by the
issuer. See section 1V-2.1 for further explanation.

* ICC Public Key Remainder: A variable-length data element. See section 1V-2.1
for further explanation.

* ICC Public Key Exponent: A variable-length data element provided by the
issuer. See section 1V-2.1 for further explanation.

* ICC Private Key: An ICC internal variable-length data element used to
generate the Signed Dynamic Application Data as described in section 1V-2.5.

ICCs that support dynamic data authentication shall generate the following data
element:

» Signed Dynamic Application Data: A variable-length data element generated by
the ICC using the private key that corresponds to the public key authenticated
in the ICC Public Key Certificate. It is a digital signature covering critical 1CC-
resident and terminal data elements, as described in section 1V-2.5.

To support dynamic data authentication, each terminal shall be able to store
multiple certification authority public keys and shall associate with each such key
the key-related information to be used with the key (so that terminals can in the
future support multiple algorithms and allow an evolutionary transition from one to
another). The terminal shall be able to locate any such key (and key-related
information) given the RID and Certification Authority Public Key Index as
provided by the ICC.

Dynamic data authentication shall use a reversible algorithm as specified in Annex
E2.1 and Annex F2. Section IV-2.1 contains an overview of the keys and certificates
involved in the dynamic data authentication process, and sections 1V-2.3 to 1V-2.6
specify the five main steps in the process, namely

May 31, 1998 Part IV - Security Aspects IV-11

* Retrieval of the Certification Authority Public Key by the terminal.
* Retrieval of the Issuer Public Key by the terminal.

* Retrieval of the IC Public Key by the terminal.

« Dynamic signature generation by the ICC.

* Dynamic signature verification by the terminal.

2.1 Keys and Certificates

To support dynamic data authentication, an ICC shall own its own unique public
key pair consisting of a private signature key and the corresponding public
verification key. The ICC Public Key shall be stored on the ICC in a public key
certificate.

More precisely, a three-layer public key certification scheme is used. Each ICC
Public Key is certified by its issuer, and the certification authority certifies the
Issuer Public Key. This implies that, for the verification of an ICC signature, the
terminal first needs to verify two certificates in order to retrieve and authenticate
the ICC Public Key, which is then employed to verify the ICC’s dynamic signature.

The bit length of all moduli shall be a multiple of 8, the leftmost bit of its leftmost
byte being 1. All lengths are given in bytes.

The signature scheme specified in Annex E2.1 is applied on the data in Table 1V-6
and on the data in Table V-7 using the Certification Authority Private Key Sca and
the Issuer Private Key S in order to obtain the Issuer Public Key Certificate and
ICC Public Key Certificate, respectively.

The public key pair of the certification authority has a Certification Authority Public
\ Key Modulus of Nca bytes, where Nca < 248. The Certification Authority Public Key
| Exponent shall be equal to 2, 3, or 216 + 1.

The public key pair of the issuer has a Public Key Modulus of Ni bytes, where N, <
248 and N1 < Nca. If N1 > (Nca — 36), the Issuer Public Key Modulus is divided into
two parts, one part consisting of the Nca — 36 most significant bytes of the modulus
(the Leftmost Digits of the Issuer Public Key) and a second part consisting of the
remaining Ni — (Nca — 36) least significant bytes of the modulus (the Issuer Public

| Key Remainder). The Issuer Public Key Exponent shall be equal to 2, 3, or 216 + 1.

The public key pair of the ICC has an ICC Public Key Modulus of Nic bytes, where

Nic 128 and Nic < Ni. If Nic > (NI —42), the ICC Public Key Modulus is divided

into two parts, one part consisting of the Ni — 42 most significant bytes of the

modulus (the Leftmost Digits of the ICC Public Key) and a second part consisting of

the remaining Nic — (N1 — 42) least significant bytes of the modulus (the ICC Public
| Key Remainder). The ICC Public Key Exponent shall be equal to 2, 3, or 216 + 1.

IV-12

Part IV - Security Aspects

May 31, 1998

To execute dynamic data authentication, the terminal shall first retrieve and
authenticate the ICC Public Key (this process is called ICC Public Key
authentication). All the information necessary for ICC Public Key authentication is
specified in Table 1V-8 and stored in the ICC. With the exception of the RID, which
can be obtained from the AID, this information may be retrieved with the READ

RECORD command. If any of this data is missing, dynamic data authentication has

failed.

Field Name Length Description Format
Certificate Format 1 Hex. value ‘02’ b
Issuer Identification 4 Leftmost 3-8 digits from the PAN cn 8
Number (padded to the right with hex. ‘F’s)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the

certification authority
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the

digital signature scheme!!
Issuer Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the Issuer

Public Key 11
Issuer Public Key 1 Identifies the length of the Issuer b
Length Public Key Modulus in bytes
Issuer Public Key 1 Identifies the length of the Issuer b
Exponent Length Public Key Exponent in bytes
Issuer Public Key or Nca — If Ni < Nca — 36, this field consists of b
Leftmost Digits of 36 the full Issuer Public Key padded to
the Issuer Public the right with Nca — 36 — N bytes of
Key value ‘BB’

If Ni > Nca — 36, this field consists of

the Nca — 36 most significant bytes

of the Issuer Public Key 12
Issuer Public Key O or Ni | This field is only present if Ni > Nca b
Remainder —Nca | —36 and consists of the N1 — Nca +

+ 36 36 least significant bytes of the

Issuer Public Key

Issuer Public Key lor3 Issuer Public Key Exponent equal to b

Exponent

2,30r218+1

Table IV-6 - Issuer Public Key Data to be Signed by the Certification Authority
(i.e., input to the hash algorithm)

May 31, 1998 Part IV - Security Aspects IV-13
Field Name Length Description Format

Certificate Format 1 Hex. value ‘04’ b
Application PAN 10 PAN (padded to the right with hex. cn 20

‘F's)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the issuer
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the

digital signature scheme?!!
ICC Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the ICC

Public Key?
ICC Public Key 1 Identifies the length of the ICC b
Length Public Key Modulus in bytes
ICC Public Key 1 Identifies the length of the ICC b
Exponent Length Public Key Exponent in bytes
ICC Public Key or Ni—42 | If Nic < Ni—42, this field consists of b
Leftmost Digits of the full 1CC Public Key padded to
the ICC Public Key the right with Ni — 42 — Nic bytes of

value ‘BB’

If Nic > Ny — 42, this field consists of

the Ni — 42 most significant bytes of

the ICC Public Key 15
ICC Public Key Oor This field is only present if Nic > Ni — b
Remainder Nic — 42 and consists of the Ni — Nca + 42

Ni + 42 | least significant bytes of the ICC

Public Key
ICC Public Key lor3 ICC Public Key Exponent equal to 2, b
Exponent 3or2%+1
Static Data to be var. Static data to be authenticated as b

Authenticated

specified in the ICC Application
Specification for Payment Systems

Table IV-7 - ICC Public Key Data to be Signed by the Issuer

(i.e., input to the hash algorithm)

15 As can be seen in Annex E2.1, Ny — 22 bytes of the data signed are retrieved from the signature.
Since the first through the eighth data elements in Table V-7 total 20 bytes, there are N; —22 - 20 =
N1 — 42 bytes left for the data to be stored in the signature.

IvV-14 Part IV - Security Aspects May 31, 1998

Tag Length Value Format
- 5 Registered Application Provider Identifier (RID) b
‘8F’ 1 Certification Authority Public Key Index b
‘90’ Nca Issuer Public Key Certificate b
‘92’ Ni — Nca + Issuer Public Key Remainder, if present b
36
‘9F32’ lor3 Issuer Public Key Exponent b
‘OF46’ Ni ICC Public Key Certificate b
‘OF48’ Nic — Ni + ICC Public Key Remainder, if present b
42
‘OF47 lor3 ICC Public Key Exponent b
- var. Static data to be authenticated as specified in -
the ICC Application Specification for Payment
Systems

Table IV-8 - Data Objects Required for Public Key Authentication for Dynamic
Authentication

2.2 Retrieval of the Certification Authority Public Key

The terminal reads the Certification Authority Public Key Index. Using this index
and the RID, the terminal can identify and retrieve the terminal-stored Certification
Authority Public Key Modulus and Exponent and the associated key-related
information, and the corresponding algorithm to be used. If the terminal does not
have the key stored associated with this index and RID, dynamic data
authentication has failed.

2.3 Retrieval of the Issuer Public Key

1. If the Issuer Public Key Certificate has a length different from the length of the
Certification Authority Public Key Modulus obtained in the previous section,
dynamic data authentication has failed.

2. In order to obtain the recovered data specified in Table 1V-9, apply the recovery
function specified in Annex E2.1 on the Issuer Public Key Certificate using the
Certification Authority Public Key in conjunction the corresponding algorithm. If
the Recovered Data Trailer is not equal to ‘BC’, dynamic data authentication has
failed.

May 31, 1998 Part IV - Security Aspects IV-15
Field Name Length Description Format

Recovered Data 1 Hex. value ‘6A’ b
Header
Certificate Format 1 Hex. value ‘02’ b
Issuer Identification 4 Leftmost 3-8 digits from the PAN cn 8
Number (padded to the right with hex. ‘F’s)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the

certification authority
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the

digital signature scheme!!
Issuer Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the Issuer

Public Key?
Issuer Public Key 1 Identifies the length of the Issuer b
Length Public Key Modulus in bytes
Issuer Public Key 1 Identifies the length of the Issuer b
Exponent Length Public Key Exponent in bytes
Issuer Public Key or Nca — If Ni < Nca — 36, this field consists of b
Leftmost Digits of 36 the full Issuer Public Key padded to
the Issuer Public the right with Nca — 36 — N bytes of
Key value ‘BB’

If Ni > Nca — 36, this field consists of

the Nca — 36 most significant bytes

of the Issuer Public Key??
Hash Result 20 Hash of the Issuer Public Key and its b

related information
Recovered Data 1 Hex. value ‘BC’ b

Trailer

Table IV-9 - Format of the Data Recovered from the Issuer Public Key Certificate

3. Check the Recovered Data Header. If it is not ‘6A’, dynamic data authentication

has failed.

4. Check the Certificate Format. If it is not ‘02’, dynamic data authentication has

failed.

5. Concatenate from left to right the second to the tenth data elements in Table 1V-9
(that is, Certificate Format through Issuer Public Key or Leftmost Digits of the
Issuer Public Key), followed by the Issuer Public Key Remainder (if present) and
finally the Issuer Public Key Exponent.

IV-16 Part IV - Security Aspects May 31, 1998

6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
to the result of the concatenation of the previous step to produce the hash result.

7. Compare the calculated hash result from the previous step with the recovered
Hash Result. If they are not the same, dynamic data authentication has failed.

8. Verify that the Issuer Identification Number matches the leftmost 3-8 PAN digits
(allowing for the possible padding of the Issuer Identification Number with
hexadecimal ‘F’s). If not, dynamic data authentication has failed.

9. Verify that the last day of the month specified in the Certificate Expiration Date
is equal to or later than today's date. If the Certificate Expiration Date is earlier
than today's date, the certificate has expired, in which case dynamic data
authentication has failed.

10.Verify that the concatenation of RID, Certification Public Key Index, and
Certificate Serial Number is valid. If not, dynamic data authentication has
failed®.

11.1f the Issuer Public Key Algorithm Indicator is not recognised, dynamic data
authentication has failed.

12.1f all the checks above are correct, concatenate the Leftmost Digits of the Issuer
Public Key and the Issuer Public Key Remainder (if present) to obtain the Issuer
Public Key Modulus, and continue with the next steps for the retrieval of the ICC
Public Key.

2.4 Retrieval of the ICC Public Key

1. If the ICC Public Key Certificate has a length different from the length of the
Issuer Public Key Modulus obtained in the previous section, dynamic data
authentication has failed.

2. In order to obtain the recovered data specified in Table 1V-10, apply the recovery
function specified in Annex E2.1 on the ICC Public Key Certificate using the
Issuer Public Key in conjunction the corresponding algorithm. If the Recovered
Data Trailer is not equal to ‘BC’, dynamic data authentication has failed.

May 31, 1998 Part IV - Security Aspects IV-17
Field Name Length Description Format
Recovered Data 1 Hex. value ‘6A’ b
Header
Certificate Format 1 Hex. value ‘04’ b
Application PAN 10 PAN (padded to the right with hex. cn 20
‘F's
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the issuer
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the
digital signature scheme!!
ICC Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the ICC
Public Key?
ICC Public Key 1 Identifies the length of the ICC b
Length Public Key Modulus in bytes
ICC Public Key 1 Identifies the length of the ICC b
Exponent Length Public Key Exponent in bytes
ICC Public Key or Ni—42 | If Nic < Ni — 42, this field consists of b
Leftmost Digits of the full 1CC Public Key padded to
the ICC Public Key the right with Ni — 42 — Nic bytes of
value ‘BB
If Nic > N — 42, this field consists of
the Ni — 42 most significant bytes of
the ICC Public Key
Hash Result 20 Hash of the ICC Public Key and its b
related information
Recovered Data 1 Hex. value ‘BC’ b

Trailer

Table IV-10 - Format of the Data Recovered from the ICC Public Key Certificate

3. Check the Recovered Data Header. If it is not ‘6A’, dynamic data authentication

has failed.

4. Check the Certificate Format. If it is not ‘04’, dynamic data authentication has

failed.

5. Concatenate from left to right the second to the tenth data elements in Table V-
10 (that is, Certificate Format through ICC Public Key or Leftmost Digits of the
ICC Public Key), followed by the ICC Public Key Remainder (if present), the ICC
Public Key Exponent and finally the static data to be authenticated specified in
the ICC Application Specification for Payment Systems.

IV-18 Part IV - Security Aspects May 31, 1998

6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
to the result of the concatenation of the previous step to produce the hash result.

7. Compare the calculated hash result from the previous step with the recovered
Hash Result. If they are not the same, dynamic data authentication has failed.

8. Check if the recovered PAN is equal to the Application PAN, read from the ICC. If
not, dynamic data authentication has failed.

9. Verify that the last day of the month specified in the Certificate Expiration Date
is equal to or later than today’s date. If not, dynamic data authentication has
failed.

10.1f the ICC Public Key Algorithm Indicator is not recognised, dynamic data
authentication has failed.

11.1f all the checks above are correct, concatenate the Leftmost Digits of the ICC
Public Key and the ICC Public Key Remainder (if present) to obtain the ICC
Public Key Modulus, and continue with the actual dynamic data authentication
described in the two sections below.

2.5 Dynamic Signature Generation

1. After successfully retrieving the ICC Public Key as described above, the terminal
issues an INTERNAL AUTHENTICATE command including the concatenation of
the data elements specified by the DDOL according to the rules specified in Part
Il of this specification.

The ICC may contain the DDOL, but there shall be a default DDOL in the
terminal, specified by the payment system, for use in case the DDOL is not
present in the ICC.

It is mandatory that the DDOL contains the Unpredictable Number generated by
the terminal (tag ‘9F37’, 4 bytes binary).

If any of the following cases occur, dynamic data authentication has failed.
* Both the ICC and the terminal do not contain a DDOL.
 The DDOL in the ICC does not include the Unpredictable Number.

* The ICC does not contain a DDOL and the default DDOL in the terminal
does not include the Unpredictable Number.

2. The ICC generates a digital signature as described in Annex E2.1 on the data
specified in Table 1V-11 using its ICC Private Key Sic in conjunction the
corresponding algorithm. The result is called the Signed Dynamic Application

May 31, 1998 Part IV - Security Aspects IV-19
Data.

Field Name Length Description Format
Signed Data 1 Hex. value ‘05’ b
Format
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result
ICC Dynamic 1 Identifies the length Lop of the ICC b
Data Length dynamic data in bytes
ICC Dynamic Lop Dynamic data generated by and/or -
Data stored in the ICC
Pad Pattern Nic — (Nic — Lop — 25) padding bytes of value b

Loo—25 | ‘BB16
Terminal var. Concatenation of the data elements -
Dynamic Data specified by the DDOL

Table IV-11 - Dynamic Application Data to be Signed
(i.e., input to the hash algorithm)

The length Lopp of the ICC Dynamic Data satisfies O < Lpp < Nic — 25. The 3-9
leftmost bytes of the ICC Dynamic Data shall consist of the 1-byte length of the ICC
Dynamic Number, followed by the 2-8 byte value of the ICC Dynamic Number (tag
‘OF4C’, 2-8 bytes binary). The ICC Dynamic Number is a time-variant parameter
generated by the ICC (it can for example be an unpredictable number or a counter
incremented each time the ICC receives and INTERNAL AUTHENTICATE
command).

In addition to those specified in Table V-8, the data objects necessary for dynamic
data authentication are specified in Table 1V-12.

Tag Length Value Format
‘OF4B’ Nic Signed Dynamic Application Data b
‘OF49’ var. DDOL b

Table IV-12 - Additional Data Objects Required for Dynamic Signature Generation
and Verification

2.6 Dynamic Signature Verification

1. If the Signed Dynamic Application Data has a length different from the length of
the ICC Public Key Modulus, dynamic data authentication has failed.

2. To obtain the recovered data specified in Table 1V-13, apply the recovery function
specified in Annex E2.1 on the Signed Dynamic Application Data using the ICC

16 As can be seen in Annex E2.1, N, — 22 bytes of the data signed is recovered from the signature.
Since the length of the first three data elements in Table 1V-11 is three bytes, there are N1 -22 -3 =
N1 — 25 bytes remaining for the data to be stored in the signature.

IV-20 Part IV - Security Aspects May 31, 1998

Public Key in conjunction the corresponding algorithm. If the Recovered Data
Trailer is not equal to ‘BC’, dynamic data authentication has failed.

Field Name Length Description Format
Recovered Data 1 Hex. value ‘6A’ b
Header
Signed Data 1 Hex. value ‘0%’ b
Format
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the digital

signhature scheme!?
ICC Dynamic 1 Identifies the length of the ICC b
Data Length dynamic data in bytes
ICC Dynamic Lop Dynamic data generated by and/or -
Data stored in the ICC
Pad Pattern Nic — (Nic — Lop — 25) padding bytes of value b
Loo—25 | ‘BB1S
Hash Result 20 Hash of the Dynamic Application Data b
and its related information
Recovered Data 1 Hex. value ‘BC’ b
Trailer

Table IV-13 - Format of the Data Recovered from the Signed Dynamic Application
Data

3. Check the Recovered Data Header. If it is not '6A’, dynamic data authentication
has failed.

4. Check the Signed Data Format. If it is not ‘05’, dynamic data authentication has
failed.

5. Concatenate from left to right the second to the sixth data elements in Table IV-
13 (that is, Signed Data Format through Pad Pattern), followed by the data
elements specified by the DDOL.

6. Apply the indicated hash algorithm (derived from the Hash Algorithm Indicator)
to the result of the concatenation of the previous step to produce the hash result.

7. Compare the calculated hash result from the previous step with the recovered
Hash Result. If they are not the same, dynamic data authentication has failed.

If all the above steps were executed successfully, dynamic data authentication was
successful.

May 31, 1998 Part IV - Security Aspects IV-21

3. Secure Messaging

The objectives of secure messaging are to ensure data confidentiality, data integrity
and authentication of the sender. Data integrity and issuer authentication are
achieved using a MAC. Data confidentiality is achieved using encipherment of the
data field.

3.1 Secure Messaging Format

Secure messaging shall be according to one of the following two formats.

Format 1: Secure messaging format according to ISO/IEC 7816-4, section 5.6,
where the data field of the affected command uses BER-TLV encoding and
encoding rules of ASN.1/1SO 8825 apply strictly. This is explicitly specified in the
lowest significant nibble of the class byte of the command, which is set to ‘C'.

This also implies that the command header is always integrated in MAC
calculation.

Format 2: Secure messaging format where the data field of the affected
command does not use BER-TLV encoding for secure messaging, but may use it
for other purposes. In this case, the data objects contained in the data field and
corresponding lengths of these data objects shall be known by the sender of a
command using secure messaging and known by the currently selected
application. In compliance with ISO/IEC 7816-4, secure messaging according to
Format 2 is explicitly specified in the lowest significant nibble of the class byte of
the command, which is set to ‘4.

3.2 Secure Messaging for Integrity and Authentication

3.2.1 Command Data Field

3.2.1.1 Format 1

The data field of the command is composed of the following TLV data objects as
shown in Figure 1V-3.

The command data to be signed, if present.

If the command data field is BER-TLV encoded, it shall either not belong to the
context-specific class (the tag shall not lie in the range ‘80’ to ‘BF’) or shall have
an odd tag (note that this may be a constructed data object).

If the command data field is not BER-TLV encoded, it shall be encapsulated with
the template ‘81"

The second data object is the MAC. Its tag is ‘8E’, and its length shall be in the
range of four to eight bytes.

IV-22 Part IV - Security Aspects May 31, 1998

Tag 1l | Length 1 Value 1 Tag 2 | Length 2 Value 2
T L Value ‘8E’ ‘04’-'08’ MAC (4-8 bytes)
(L bytes)

Figure IV-3 - Format 1 Command Data Field for Secure Messaging for Integrity and
Authentication

3.2.1.2 Format 2

The data elements (including the MAC) contained in the data field and the
corresponding lengths shall be known by the sender of a command using secure
messaging and known by the currently selected application. The MAC is not BER-
TLV coded and shall always be the last data element in the data field and its length
shall be in the range of 4 to 8 bytes (see Figure 1V-4).

Value 1 Value 2
Command data (if present) MAC (4-8 bytes)

Figure IV-4 - Format 2 Command Data Field for Secure Messaging for Integrity and
Authentication

3.2.2 MAC Session Key Derivation

The first step of the MAC generation for secure messaging for integrity consists of
deriving a uniqgue MAC Session Key from the ICC’s unique MAC Master Key as
described in Annex E1.3.

3.2.3 MAC Computation

The MAC is computed by applying the mechanism described in Annex E1.2 with the
MAC Session Key derived as described in section 1V-3.2.2 to the message to be
protected.

If secure messaging is according to Format 1, the message to be protected shall be
constructed from the header of the command APDU (CLA INS P1 P2) and the
command data (if present) according to the rules specified in ISO/IEC 7816-4,
Section 5.6.

If secure messaging is according to Format 2, the message to be protected shall be
constructed according to the payment scheme proprietary specifications. It shall
however always contain the header of the command APDU and the command data
(if present).

In all cases, if the MAC used for secure messaging has been specified as having a
length less than 8 bytes, the MAC is obtained by taking the leftmost (most
significant) bytes from the 8-byte result of the calculation described above.

May 31, 1998 Part IV - Security Aspects IV-23

3.3 Secure Messaging for Confidentiality

3.3.1 Command Data Field
3.3.1.1 Format 1

The format of an enciphered data object in a command data field is shown in Figure
1V-5.

Tag | Length Value
T L Cryptogram (enciphered data)

Figure IV-5 - Format 1 Enciphered Data Object in a Command Data Field

Depending on the plaintext data to be enciphered, ISO/IEC 7816-4 specifies the tag
to be allocated to the resulting cryptogram. An odd tag shall be used if the object is
to be integrated in the computation of a MAC; an even tag shall be used otherwise.

3.3.1.2 Format 2

Data encipherment is applied to the full plaintext command data field with the
exception of a MAC (see Figure 1V-6).

Valuel Value2
Cryptogram (enciphered data) | MAC (if present)

Figure IV-6 - Format 2 Command Data Field for Secure Messaging for
Confidentiality

3.3.2 Encipherment Session Key Derivation

The first step of the encipherment/decipherment for secure messaging for
confidentiality consists of deriving a unique Encipherment Session Key from the
ICC’s unique Encipherment Master Key as described in Annex E1.3.

3.3.3 Encipherment/Decipherment

Encipherment/decipherment of the plain/enciphered command data field takes place

according to the mechanism described in Annex E1.1 with the Encipherment Session
Key derived as described in the section 1V-3.3.2.

IV-24 Part IV - Security Aspects May 31, 1998

4. Personal Identification Number Encipherment

If supported, Personal Identification Number (PIN) encipherment for offline PIN
verification is performed by the terminal using an asymmetric based encipherment
mechanism in order to ensure the secure transfer of a PIN from a secure tamper-
evident PIN pad integrated in the terminal to the ICC.

More precisely, the ICC shall own a public key pair associated with PIN
encipherment. The public key is then used by the PIN pad to encipher the PIN, and
the private key is used by the ICC to verify the enciphered PIN.

The PIN block used in the data field to be enciphered shall be 8 bytes as shown in
Section 4.2.

4.1 Keys and Certificates

If offline PIN encipherment is supported, the ICC shall own a unique public key pair
consisting of a public encipherment key and the corresponding private decipherment
key. This specification allows the following two possibilities.

1. The ICC owns a specific ICC PIN Encipherment Private and Public Key. The
ICC PIN Encipherment Public Key shall be stored on the ICC in a public key
certificate in exactly the same way as for the ICC Public Key for dynamic data
authentication as specified in Section I1V-2.

The ICC PIN encipherment public key pair has an ICC PIN Encipherment
Public Key Modulus of Nre bytes, where Npe < 128 and Npe < Ni, N1 being the
length of the Issuer Public Key Modulus (See section I1V-2.1). If Npe > (Ni — 42),
the ICC PIN Encipherment Public Key Modulus is divided into two parts, one
part consisting of the Ni — 42 most significant bytes of the modulus (the
Leftmost Digits of the ICC PIN Encipherment Public Key) and a second part
consisting of the remaining Nre — (NI — 42) least significant bytes of the modulus
(the ICC PIN Encipherment Public Key Remainder).

The ICC PIN Encipherment Public Key Exponent shall be equal to 3 or 216+1.
The ICC PIN Encipherment Public Key Certificate is obtained by applying the

digital signature scheme specified in Annex E2.1 on the data in Table 1V-14
using the Issuer Private Key (see Section 1V-2.1).

May 31, 1998 Part IV - Security Aspects IV-25
Field Name Length Description Format
Certificate Format 1 Hex. value ‘04’ b
Application PAN 10 PAN (padded to the right with hex. cn 20
‘F's)
Certificate 2 MMYY after which this certificate is n4
Expiration Date invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the issuer
Hash Algorithm 1 Identifies the hash algorithm used to b
Indicator produce the Hash Result in the
digital signature scheme!!
ICC PIN 1 Identifies the digital signature b
Encipherment Public algorithm to be used with the ICC
Key Algorithm PIN Encipherment Public Key!!
Indicator
ICC PIN 1 Identifies the length of the ICC PIN b
Encipherment Public Encipherment Public Key Modulus
Key Length in bytes
ICC PIN 1 Identifies the length of the ICC PIN b
Encipherment Public Encipherment Public Key Exponent
Key Exponent in bytes
Length
ICC PIN Ni—42 | If Npe < Ny —42, this field consists of b
Encipherment Public the full ICC PIN Encipherment
Key or Leftmost Public Key padded to the right with
Digits of the ICC Ni — 42 — Npe bytes of value ‘BB’
PIN Encipherment If Nee > NI — 42, this field consists of
Public Key the N — 42 most significant bytes of
the ICC PIN Encipherment Public
Key 17
ICC PIN Oor This field is only present if Nre > N b
Encipherment Public Nic — — 42 and consists of the Ni — Npe + 42
Key Remainder N + 42 | least significant bytes of the ICC
PIN Encipherment Public Key
ICC PIN lor3 ICC PIN Encipherment Public Key b

Encipherment Public
Key Exponent

Exponent equal to 3 or 216+1

Table IV-14 - ICC PIN Encipherment Public Key Data to be Signed by the Issuer
(i.e. input to the hash algorithm)

2. The ICC does not own a specific ICC PIN encipherment public key pair, but
owns an ICC public key pair for dynamic data authentication a specified in

17 As can be seen in Annex E2.1, Ny — 22 bytes of the data signed are retrieved from the signature.
Since the first through the eighth data elements in Table V-7 total 20 bytes, there are N; —22 - 20 =
N1 — 42 bytes left for the data to be stored in the signature.

IV-26 Part IV - Security Aspects May 31, 1998

Section 2.1 of this specification. This key pair can then be used for PIN
encipherment, if and only if the ICC Public Key Exponent is equal to 3 or 216+1.
The ICC Public Key is stored on the ICC in a public key certificate as specified
in Section 2.

The first step of PIN encipherment shall be the retrieval of the public key to be used
by the terminal for the encipherment of the PIN. This process takes place as follows.

1. If the terminal has obtained all the data objects specified in Table 1V-15 from the
ICC, then the terminal retrieves the ICC PIN Encipherment Public Key in
exactly the same way as it retrieves the ICC Public Key for dynamic data
authentication (see Section 1V-2).

2. If the terminal has not obtained all the data objects specified in Table 1V-15, but
has obtained all the data objects specified in Table 1V-8, and the ICC Public Key
Exponent is equal to 3 or 216+1, then the terminal retrieves the ICC Public Key
as described in Section 1V-2.

3. If the conditions under points 1 and 2 above are not satisfied, then PIN
encipherment has failed.

Tag Length Value Format
- 5 Registered Application Provider Identifier (RID) b
‘8F’ 1 Certification Authority Public Key Index b
‘90’ Nca Issuer Public Key Certificate b
‘92’ Ni — Nca + | Issuer Public Key Remainder, if present b
36
‘OF32’ lor3 Issuer Public Key Exponent b
‘OF2D’ NI ICC PIN Encipherment Public Key Certificate b
‘OF2E’ Nee — Ni + | ICC PIN Encipherment Public Key Remainder, if b
42 present
‘OF2F’ lor3 ICC PIN Encipherment Public Key Exponent b

Table IV-15 - Data Objects Required for the Retrieval of the ICC PIN Encipherment
Public Key

4.2 PIN Encipherment and Verification

The exchange and verification of an enciphered PIN between terminal and ICC
takes place in the following steps.

1. The PIN is entered in plaintext format on the PIN pad and a PIN block is
constructed as defined in Part Il of this specification.

2. The terminal issues a GET CHALLENGE command to the ICC to obtain an 8-
byte unpredictable number from the ICC.

May 31, 1998

Part IV - Security Aspects

IvV-27

3. The terminal generates a Random Pad Pattern consisting of N — 17 bytes,
where N is the length in bytes of the public key to be used for PIN encipherment
retrieved as specified in Section 1V-4.1 (hence N = Npe or N = Nic).

4. Using the PIN Encipherment Public Key or the ICC Public Key retrieved as
specified in Section 1V-4.1, the terminal applies the RSA Recovery Function

specified Annex F2.1.1.3 to the data specified in Table 1VV-16 in order to obtain
the Enciphered PIN Data.

Field Name Length Description Format
Data Header 1 Hex. value ‘7F b
PIN Block 8 PIN in PIN Block b
ICC Unpredictable Number 8 Unpredictable number obtained from b
the ICC with the GET CHALLENGE
command
Random Pad Pattern Nic — 17 | Random Pad Pattern generated by the b
terminal

Table IV-16 - Data to be Enciphered for PIN Encipherment

The terminal issues a VERIFY command including the Enciphered PIN Data
obtained in the previous step.

With the ICC Private Key, the ICC applies the RSA Signing Function specified
in Annex F2.1.1.2 to the Enciphered PIN Data in order to recover the plain text
data specified in Table 1V-15.

The ICC verifies whether the Data Header recovered is equal to ‘7F'. If this is
not the case, PIN verification has failed.

The ICC verifies whether the ICC Unpredictable Number recovered is equal to
the ICC Unpredictable Number generated by the ICC with the GET
CHALLENGE command. If this is not the case, PIN verification has failed.

The ICC verifies whether the PIN included in the recovered PIN Block
corresponds with the PIN stored in the ICC. If this is not the case, PIN
verification has failed.

If all the above steps were executed successfully, enciphered PIN verification was
successful.

In order for this mechanism to be secure, the steps 1 through 4 must be executed in
the secure environment of the tamper-evident PIN pad.

1V-28 Part IV - Security Aspects May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

Annexes

May 31, 1998 Annex A - Examples of Exchanges Using T=0 A-1

Annex A - Examples of Exchanges Using T=0

The following examples illustrate exchanges of data and procedure bytes between
the TTL and ICC.

Note the following:
‘ » The use of procedure bytes ‘60’ and INS is not illustrated.

» [Data(x)] means x bytes of data.

| » Case 2 and 4 commands have Le = ‘00’ requesting the return of all data from the
| ICC up to the maximum available.

The examples in sections Al to A4 illustrate typical exchanges using case 1 to 4
commands. The examples in sections A5 and A6 illustrate the more extensive use of

procedure bytes ‘61 xx’ when used with case 2 and 4 commands. The example in
section A7 illustrates a warning condition with a case 4 command.

Al. Case 1 Command

| A C-APDU of {CLA INS P1 P2} is passed from the TAL to the TTL (note that P3 of
| the C-TPDU is set to ‘00").

TTL ICC

[CLA INS P1 P2 00] O
90 00

A R-APDU of {90 00} is returned from the TTL to the TAL

A2. Case 2 Command
| A C-APDU of {CLA INS P1 P2 00} is passed from the TAL to the TTL.
TTL ICC

[CLAINS P1 P2 00] O
O 6C Licc
[CLA INS P1 P2 Licc] O
0 INS [Data(Licc)] 90 00

| A R-APDU of {[Data(Licc)] 90 00} is returned from the TTL to the TAL.

A-2 Annex A - Examples of Exchanges Using T=0

May 31, 1998

A3. Case 3 Command

A C-APDU of {CLA INS P1 P2 Lc [Data(Lc)]} is passed from the TAL to the TTL.

TTL ICC
[CLAINSP1P2Lc] O
O INS
[Data(Lc)] O
[0 90 00

A R-APDU of {90 00} is returned from the TTL to the TAL.

A4. Case 4 Command

| A C-APDU of {CLA INS P1 P2 Lc [Data (Lc)] 00} is passed from the TAL to the TTL.

TTL ICC

[CLAINS P1 P2 Lc] O
O [INS]
[Data(Lc)] O
O 61 Licc
[00 CO 00 00 Licc] O
[0 CO [Data(Licc)] 90 00

| A R-APDU of {[Data(Licc)] 90 00} is returned from the TTL to the TAL.

A5. Case 2 Commands Using the ‘61’ and ‘6C’
Procedure Bytes

| A C-APDU of {CLA INS P1 P2 00} is passed from the TAL to the TTL.

‘ TTL ICC
[CLAINS P1P200] O
O 6C Licc
[CLA INS P1 P2 Licc] O
O 61 xx

[00 CO 00 00 yy] O

0 CO [Data(yy)] 61 zz
[00 CO 00 00 zz] O

0 CO [Data(zz)] 90 00

Where yy < xx

May 31, 1998 Annex A - Examples of Exchanges Using T=0 A-3

| A R-APDU of {[Data(yy + zz)] 90 00} is returned from the TTL to the TAL.

A6. Case 4 Command Using the ‘61’ Procedure Byte

| A C-APDU of {CLA INS P1 P2 Lc [Data Lc] 00} is passed from the TAL to the TTL.

TTL ICC
[CLAINSP1P2Lc] O
O [INS]
[Data(Lc)] O
0 61 xx

[00 CO 00 00 xx] O

[0 CO [Data(xx)] 61 yy
[00 CO 00 00 yy] O

0 CO [Data(yy)] 90 00

A R-APDU of {[Data(xx + yy)] 90 00} is returned from the TTL to the TAL.

A7. Case 4 Command with Warning Condition

A C-APDU of {CLA INS P1 P2 Lc [Data Lc] 00} is passed from the TAL to the TTL.
TTL ICC

[CLA INS P1 P2 Lc] O

O [INS]
[Data(Lc)] O

0 62 xx
[00 CO 00 00 00] U

0 6C Licc

[00 CO 00 00 Licc] O
0 CO [Data(Licc)] 90 00

A R-APDU of {[Data(Licc)] 62 xx} is returned from the TTL to the TAL containing
the data returned together with the warning status bytes.

A-4

Annex A - Examples of Exchanges Using T=0

May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

ereq

uoneoljdde Areuonauiasig

Z2¢-T 5046, | ./, 10 .0., q e%e) ay3 01 bunejau eyep paiy1oads walsAs JuswAed 1o 1anss| co_umo__gas

jJuauodx3g

/T2ZY OS1 01 Buipioade pajussaidal Junodde ayi o 1ybu Aduauaan)

T Yvd6, | L/, 10,0/, Tu o%e] | 3y woay quiod jewidap ayi Jo uonisod paljdwi ayi sayeaipuj co_umo__gas

/T2y OSI 01 buipioade 9apo) Aduaain)d

Z 246, | ../, 10.0/, cu e)e)] | pabeuew SI 1JUN0J2Jk 8yl YdIym ul Aoualind ayl sayedipuj co_umo__gas

puewwod DV J1vHINTD weabordAiD

8 9246, | .08,40.//, q e)e)] | ay3 Jo asuodsal ul 91 8yl Ag pauaniad weabordAi) co_umo__gas

Aduauaun)

ERVEIETEN

¥ V<46, - q [eulwia | Adua1un? aoualalal syl ul passaldxa Junowe pastioyiny ‘Junowy

Junowe yoeqysed e bunuasaidau (oswinpN)

9 £0486, - 2T u leulwia | uonoesue.] ayl Ylim pareldosse Junowe A1epuodss 13410 ‘unowy

Junowe yoeqysed e bunuasaidau (Areuig)

¥ 7046, - q leulwia | uonoesue.] ayl Ylim pareldsosse Junowe A1epuodss 13410 ‘unowy

(oswinpN)

(squswisnlpe pasLioyiny

9 20486, - ZTu leulwia | Buipn|oxa) uolloesueIl syl JO JUNOWR PasLIoylny ‘Junowy

(Areuig)

(squswisnlpe pasLioyiny

14 T8, - q leulwia | Buipn|oxa) uolloesueIl syl JO JUNOWR PasLIoylny ‘Junowy

san|iqeded

[eurwial leulwia |

S 07746, - q leulwiaa | ay1 Jo sanijigeded 1ndino pue 1ndul Blep ayl saqedipu] leuonippy

WwI91sAs Jainuspi

9 .T046, - TT-9 U [eulwia | j1uswAed yoes uiylim aaainbae syl saiyinuapl Alanbiun Jalinboy
yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

e1ep ojuo Huiddew a1yl pue abueyoasalul

'sa|1) pue s193lgo

uoloesuURI] [elouRULY 10) PasN ag Aew 1Y) S1USLIS|S BIRP 3SOY] Saulep T-g a|qel

a|gel Siuawsa|3 eleq - g Xxauuy

3|ge.l SsuswWa|g vreq - g Xauuy

866T ‘T AeiN

LTZv OSI 01

Buipioage s1bBIp € SI 8pod Yyaes ‘apo) Asualund uoiedljddy Aduaiain)
3U3 WO} JUaJalIp SI 8poD Aduaiund uonoesueld] ayl usym ERIEYETEY
8-z 4gae46, | .22, 10 .02, cu o}e) D21 3yl pue [eulwldl 8yl Udamlag pasn Sapod Aoualund i-T uolyedl|ddy
Jojesipuj
A1019311p e ul suoneaijdde Auond
T /8, GV, 10 .T9, o} oo Jo dnoub 10 uonresijdde uanib e jo Alo1id ayy sayedipu| uoneslddy
JaquinN
9ouanbas (Nvd)
JaguinN 1unodoy
Arewnid
T ¥€4G, | L2, 40.,0Z, zu ole] NVd awes ayl Ylim Sp.aed saleiualajiip pue saiinuap| uolyedl|ddy
(Nvd)
JaguinN 1unodoy
0T 01 6T 01 dn "JeA Arewnid
dn “aen VS, /.10 .0/, uo o%e] | Jdagwinu Junodoe 1apjoypied pijeA co_umo__gas
aweN palisjald
9T-T 2146, T9, 91-T ue ole] adlV 3yl YHUM palerodosse dluowauw patiajeld uoneolddy
G-9T8. IageT
9T-T .08G, 9V, 10 T9, 9T-T ue ole]| O31/0S1 01 Buiplodoe 1V Yl YIMm paleloosse JIUoWaUN uoiyedl|ddy|
sjijoid
uonearjdde ayy ul suonnduNy abueyoiaqu]
4 .28, .08, 10.//, o} oo a1j19ads 110ddns 01 pJaed syl Jo sainijigeded ayy sayedipu| co_umo__gas
(@1v) 1aynuspj
9T-G 9046, - q [eurws | G-9T8Z D31/0OSI Ul paqLIasap se uonealjdde syl ssyusp| uoneolddy
(@1v) 1aynuspj
91-§ AP, T9, q ole] G-9T8Z D31/0OSI Ul paqLIasap se uonealjdde syl ssyusp| uoneolddy
25z 01 uonesijdde uaalb e 01 paje|al (14v) 101207
dn “aen V6, .08, 10 ../, “Jen o)e)] | S43V ay1 Jo (spJodau Jo abued ‘14S) uonedo] syl sayedipuj | aji4 co_umo__gas
AANINAA 818Q UONEIIdXT
€ ¥24S, | 2,40 .02, gu ole]! saJ1dxa uonresljdde yorym ssye areq uoiyedl|ddy|
AdAININAA a1eq aAIldBRyg
€ G24S, | L2, 40,02, gu ole]! pasn aq Aew uolyesrjdde ayl ydrym wouy ared uoiyedl|ddy]

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

866T ‘T€ Aey 9|ge L sluswsa|j ejeq - g Xauuy ¢-d

€18.
OSI Ul Se uolluaAuod Buipod awes ayl buisn si1a1dedeyd 9z

papualIx3 aweN

S-12 9046, | .22, 40,0/, Gi-)2 sue 201 ueyl J4a1ealb usym aweu J1apjoypaes ajoym ayl saxeaipuj Japjoypae

aweN

92-¢ 0c¢ds, | /L, 40,0/, 9¢-Z sue 20l €18/ 0S| 01 bulp10d9e SWeU Japjoypied saredipu| Japjoypredy

(c10ad) z

15171 308[qO ereq

FASTAN! puewWwod IV J1VHINTO pu0Iss ayl ul 1uswabeuey

dn “rea as, | ..., 10.0. q ele]| D21 8y 03 passed aq 01 (YiBus| pue Hel) s108lqo erep Jo 1si] Sy pJeg)

(T70a2) 1T

15171 308[qO ereq

ASTAV puewwWod DV JLVHINITD 1s41) 8yl ul Juswabeuey

dn “rea 08, | ..1,40.0., q ele]| D21 8y 03 passed aq 01 (YiBus| pue Hel) s108lqo erep Jo 1si] Sy pJeg)

[eulwia | 9p0) asuodsay

z V8, - Z ue /1anssj abessaw e Jo uonisodsip syl ssulsp 18yl apod uonestioyiny

apo)d

9 68, - g ue lanssj| uonoesueul panoadde ue a0} 1anssi ayl Ag paretsuab anjep uonesLoylny

uonedljdde | 1aquinN UOISIBA

Z 6046, - q [eulwia | ay31 JojJ walsAs 1uswAed ayy Ag paubisse Jaguinu UoISIaA uoneoljddy

uonedljdde | 1aquinN UOISIBA

z 8046, | ../, 10 .0/, q o)e)] | ay31 JojJ walsAs 1uswAed ayy Ag paubisse Jaguinu UoISIaA co_umo__gas

uonesijdde ayy 10) pamojje SadIAIaS pue abesn |]oJquo) abesn

z 2046, | ../, 0.0/, q o)e)] | a1ydeaboab ayy uo suoild1I1Sal palyidads s,1aNnssi saedlpu] co_umo__gas

(01v) 481un0d

(D21 ay1 Ag pabeuew si D1V syl Burnuawaaoul) uolnoesue.d |

4 9€46, | .08,40.//, q ole]! D21 8y ui uonesijdde syi Agq paurelurew 1s1unod uoiyedl|ddy|

252 01 G-9T8/ D31/OSI 01 Buipaodde Aiqua A1o012a41p uonedrjdde arejdwa

dn “aen .19, L1, 10 0/, q o)e)] | ue 0] JueA3|aJ S193[go e1ep 840W 10 BUO SUIRIUOD co_umo__gas

jJuauodx3g

/T2y OSI 01 Bulpaoade pajussaadal saloualiIng Aduauaun)

9JuaJiajal #-T 8y} JO yoes 10j ‘qunowre ayj Jo 1ybii ERIEYETEY

T £EV46, | L4100, Tu ole]! aY3} wioJy 1utod rewirosp ayi o uorisod parjdwi syl saredipuj uoiyedl|ddy]

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

€-9 9|]eL Ssluswa|7 eleq - d Xauuy 866T ‘T€ Aey

arejdwa]

AT §-978/ 23l1/0SI Areuonauosiq

dn “qen £/, .19, "Jen e%e] | 01 Buipaoade A1019341p ay1 Jo 1red A1euol1aidsip 1anss| A1010811Q

aweN (4aaq)

al14 uoniuyeq

91-§ .ase, 19, q ole]! A10108.1p © Y}IM PaIRId0SSE 4 B J0 sweU dYl Salj1iusp| A10108.41Q

¥-918. aweN (4Q)

9T-S 8, 49, q oe]| D31/0S1 ul paqlidssp se 4 ay1 Jo swreu syl saljiuspl| 9|14 paredipsd

eleq uonedijddy 9po)

217e1S paubis ayl Jo ssadoad uonealjliaA ayl burlinp uoneInuUayIny

Z G746, q 201 [eulwaal ayl Aq paulelal si 1eyl anjea paubisse Janssl Uy eleq

eleq

[euiw.al ayl Aq pawiopiad uolyewioju]

T 1246, | .08,40.//, q o%e] | 2q 01 suoIloe ayy pue weabordAid Jo adA ayy saredipu] EEmSa\co_

'4AV ue 10 4ad

652 01 e Jayye bBunoslas Jo asodind syl 4o} NAdV puBWIWOI € se w.i0j1ad

dn “aea .25, .T9, q 0}e) DD1 8yl 01 Jeulwldl syl Ag palaAl|ap aq 01 S91A(JO Sal1aS 01 puewwo)

arejdwa]

“Jen £8, q leulwia | abessalu puewWILIOD ® JO P|al) BIep ay] Saljijusp] puewwo)

xapu| Aoy

ary ay: yum uonounfuod | ajgnd Ayaoyiny

T 2246, - q feurwiia ur Asx o1ignd s A11104Ine UOIILIIILIBD 8Y1 SalIIUSP] uo11edlIIRD

xapu| Aoy

ary ay: yum uonounfuod | aljgnd Ayaoyiny

T 48, | 1,40 .04, q 20l ur Asx o1ignd s A11104Ine UOIILIIYILIBD 8Y1 SalIIUSP] uoryesyiIed

syinsay

(WAD) poylsiN

UoITedIISA

€ €46, - q leulws | pawuJoad INAD 1Se| 38Ul JO S1INsaJ 8yl sa1edlpul Jdapjoyp.red

1sI7

(WAD) poylsiN

262 01 uonesijdde ayl Ag palioddns uoneILIBA

dn “ren .38, ,/L,10 0/, q 20l JapjoypAed ayy Jo UOIIeILISA JO pOoYylaw e saljiusp] Japjoypedy

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

866T 'TE Aey 9|ge L sluswsa|j ejeq - g Xauuy -4

gloT

3246,

2,10 0.,

0)0)|

juswiaydious
NId 40} pasn quauodx3 A3 21jgnd 1uswaaydioug Nid DDl

usuodx3g

Aoy o1gnd
uawuaydioug
NId (001)
pJ1ed 1nday
pale.abalu]

adc4e,

2,10 0.,

0)0)|

Janss1 ay1 Aq pany111a0 As3 a1jgnd swasydiou3 Nid 221

91edl41118D)
Aax a1jand
uawJaydioug
NId (001)
pJed 1N
paje.abaju]

8-¢

Y46,

0)0)|

[euiwial syl Aq
painided aqg 01 ‘DD 8yl Ag paredauab Jaquinu JuelieA-awi]

JaquinN
olweuAq 00l

¢G¢ 01
dn “aea

_”_w_

“Aen

o)e]|

¥-9T8. O31/OSI 01 BuIp0d9e a1ejdwal |D BY SalUap|

arejdwsal (104)
uoljew.ojui
[043U0D 3|14

“Aen

hm<_

_”_O_

“Aen

o)e]|

#9178/ D31/0S| 03 Buipiodoe srejdwal |D4 8yl ul
uoneslyoads siyy 01 Aselsiadoad 198[qo e1ep syl sayiuap]

arejdwa
Arejanudoud
(104)
uolyewoju]
joa3u0D 914

¢cc 01
dn “aena

—OO”_m_

hm<_

“Aen

o)e]|

124 ay1 Jo 1red A1euoi1aiasip 1anss|

eleq
Areuonauiosiq
Janss| (104)
uoIeWwIoU|
[011u0D 9|14

ZGz 01 dn

—mvum_

NN -ho hON_

q

o)e]|

puewwod 31 vIILNIHLNY TVNYILNI 8y ul
D21 8y 01 passed aq 01 (Yibus| pue 6el) s10slgo erep Jo 1s17

(oaa)

15171 308[qO ereq
uoneanuayINy
el o_Emc>D_

yibua

be |

arejdwal

Tew.o4

92/N0S

uondiosaq

aweN

3|ge.l SsuswWa|g vreq - g Xauuy

866T ‘T AeiN

eleq

uoneonusyINy

91-8 T6, - q Janss| uoIedIluaylne Ianssi auljuo 10§ D] syl 01 1uas ele 1anss|

Z€ 0 uoloesuelI] auljuo ue ul 4anssi ayy | eyeq uonednddy

dn “aen 0146, | .08, 10 ../, q o)e)] | 0] uolIssiwsue.] 10j elep uonesljdde Areyaridoad surejuo)d B:mw__

suljuo palliwisuel] aq aulJuUQ - apod

S 4046, | ../, 10 .0, q 0}e) 01 UoIloBSURI] B 9sned 1] SUOILIpU0I S,43NssI ay] saljiveds uo110Y Janss||

auljuo ob 01 1dwiaiye 1noyIMm uondesueal [eluaq - apo)d

S 3046, | .22, 10 .0/, q 0}0) B JO [eIUap 8yl asned 1ey) SUoIIpuUod S,1anssi ayl saij1oads uo110Y Janss||

auljuo uonoesue.l ayy ssadoid 01 ajgqeun SI [eullwIa]

8yl 1ng ‘auljuo panoiadde uaaq aney 1ybiw 11 1 pajoalal aq 1 neyaq - 9pod

S .aode, | ../, 0.0/, q 0}e) 01 UoIloBSURI] B 9sned 1] SUOILIpU0I S,43NssI ay] saljiveds uo110Y Janss||

JaquinN

Jainyoejnuew ayl Aq rewss (a4rn)

8 37146, - g ue Jeulwlial | @4l 8yl 01 paubisse Jaquinu [eldas JusuewJad pue sanbiun | ad1A8Q adeyualu|

Japureway

Aoy a1gnd (001)

v+ pJed 1naa1)

N -°'N 846, | ..., 10 .0/, q 20l snINpoN A83 a11qnd D21 8y3 Jo subip Bulurewsy _omuEmmE__

jJuauodx3g

Aoy a1gnd (001)

eleq uoneoljddy stweuAq pasubis pJed 1naad

€01t Lvd6, | L1, 40,02, q ole]! 341 JO UOILIIILIBA 38U 40} pasn Jusuodx3 As) a1jgnd DI pajesbolu]|

91edyinIe)d

Aax1 a119nd (001)

pJed 1naaip

'N 946, | .., 10.0., q 0] 18nssi ay1 Aq paiy1a8d Asy o1jgqnd D2l peleabelu|

lapureway

Aax a1jand

uawJaydioug

NId (001)

ey + SNINPOA pJaed 1ndiIg

IN-3N | 4246, | .LL 40 .0L, q ole] Aax a11and swiaaydioug Nid 21 8y3 jo subip Bulurewsy payeabaru|
yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

866T 'TE Aey 9|]el Slusws[d eleq - g Xxauuy 9-d

apo) ssauisng

101d220y pae)d 10) £66T:£858 OS| 01 Buipaodode pajuasaidau apo) Aiobare)d

I GT46, - yu Jeulwlial | ‘yueyasaw syl Aq suop Bulaq ssauisng jo adAl ayl ssuisse|D 1URYIISIN

Ayijigeded auljuo yum [euiwg) e Ul pamojfe HwiIT suliyo

uonesidde DD| SIY3 404 SUOIIOESUEBIY BUIHO0 BAIINIBSUOD BAAIINIBSUO0D

T Y146, | ..., 10 .0/, q o}e) JO Jaguinu winwixew ay3} 10} 8duaiajaad paljioads-1anssj Jamo

121s109y

(OLw) 483uno

uonoesuel |

uoneoljddy

Z £Td6, - q o}e] auluO JusM Jey] uoljdesuell 1se| 8yl Jo anjeA O 1V auluQ 1se7

6€9

0S|I 01 Buipiodge sua1oeaeyd [eonaqeydle z Ag paluasaidau 2Jualajald

8-2 .az4s, SV, Z ue o%e] | yoeas ‘aoualajaid Jo 1apao ul palols sebenbue| -1 abenbue]

puewwod 3V 31VHINID puodss syl Jaye 30| Z arejdwal

“Ten 2., - q lanssj| aY] 01 uolIssiwsuea] 10} eyep aanssi Atelsridoad surejuo)d 1d119S Janss|

puewiwod JV 31 VHINTD pu0dss ayl aiojaq Dl T arejdwal

“Ten T - q lanssj| aY] 01 uolIssiwsuea] 10} eyep aanssi Atelsridoad surejuo)d 1d119S Janss|

Jaynuspl

¥ 8146, | .2l 10T/, q Janssj 1d119S 18Nss| 8yl JO uoireslyijuap| 1d119S Janss|

T9¢ 01 puewiwod

dn “sena 98, 2., 10 .12, q Janssj D21 2yl 01 UOISSIWISURI] 10} pUBWILIOD B SUleluo)d 1d119S Janss|

9€ + Japureway Ao

YON - N .26, L2, 40 .0/, q o}e] snINpo\ A8 21jgnd Janss| ay3 Jo subip Bulurewsy algnd Janssj

91edl11I38D

A&y 211gnd D21 2yl pue eleq uonedljddy onels psubis 1usuodx3 Asy

€017 2846, | .22, 40,0/, q 201 31 JO UOIIedIJLIdA 31 10} pasn Juauodxa A3 o1jgnd Janss| a11gnd Janss|

91e0111149D A

YON .06, L2, 40 .0/, q 0}e] Ayoyine uoireoinaad e Aq paiyinaed Asy orgnd aanssj allgnd Janssj|

ET)

z 8z4S, | .22, 40,0/, eu 201 99TE 0S| 01 Bulpa0Ide JaNSsSsI 8yl Jo A1UN0I 3yl sa1edlpu] Anuno) Janssj|

aweN paJiajaid uonedijddy ayy buike|dsip X3apu| a|qel

T TTd6, SV, cu ole]| 10} 6588 0S|I 031 HulpJ029E 3]qe) 8P02 dY) SBYLdIPU| 8p0D Janss|

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

/-4 9|]eL Ssluswa|7 eleq - d Xauuy 866T ‘T€ Aey

eleq uonedjddy srweuAq Jo J13e1s paubis
3Yl Ul pspnjoul ag 01 aJde Sp|alj anjeA asoym uoiresiyioads

117 Bel
uoleInuUayINy

“Jen Y6, | L., 40,0/, - ole]! SIy1 U1 paulyap s193[qo eyep aAniwiid Jo sbey Jo 1s17 eleq Jnelg

uoljeduayine eyep 213els | eleq uonedljddy

IN £6, L1, 10 0/, q o)e)] | 10J s1a1aweaed uonesijdde [eanito uo ainleubis jeubig a11e1s Umcm_m_

uonediuayine eyep JiweuAp | e1eg uonedljddy

oIN av4e6. - q 050! 10J s1a3aweaed uonesljdde jeanito uo aanleubis [eubig | srweuAq pasubis

'048Z 01 13S S11q JapJo ybiy a4y ayl yum _

pIaly Areuiq e si 193[qo e1ep |4S 8yl '4Ad 10 43V udAIb | (14S) Jai1nusp||

T 88, SV, q ole]! © 0] pale|al SpUBLILWIOD 8yl Ul Pasn 8q 01 |4S 8yl Sai1usp| 9|14 10ys

Z 0€4S, | .22, 10,0/, cu 201 Z pue T S>JeJ]1 U0 paulyap Se apod 32IAISS apoD 31N

Z lew.oH

a1e|dwa |

puewWwoI © 0] asuodsal ul DD syl Aq abessa|n

Jen A1, Jen oo pauanial (syibus| pue sbel yum) s1oalqo eiep syl sureiuo)d mmcoammm_

T lew.oH

a1e|dwa |

puewWwod © 0] asuodsal ul D) syl Agq pauaniad abessa

Jen .08, “Jen e}e]| (syabus] pue sbey 1noyrim) s108lqo eiep syl sureiuo)d asuodsay

(Qoad)

puewwod SNOILJO 9NISS3IO0Hd 15171 108[90

139 aya buissasoad ul D1 syl Aq papasu (syibusi eleq suondo

Jen 8546, SV, o} o0 pue sfel) s310algo eyep 1uspiIsal [eulwial JO 1SI| B surejuod Buissasoad

apoN Ainu3 3POIN

SOd /86T:€858 OSI Y3 Jo sHb1p 0m3 3s11y 3Y3 03 Bulpiodde Anuz (SOd)

T 6£46, - Zu [eulwia | ‘padarus sem NVd 8yl Ydiym Aq poylaw ayl Ssledipuj | 991AI18S-J0-1Ulod

Jajuno) Augl

(N1d) 1equinN

uoneolnuap|

T ,T46, - q o}e] Bururewsau sall Nid 40 JaqunpN leuos.iad

1UBY2I9W USBAID B saljinuapl Jaynuap|

GT 9T46, - GT sue leulwlaa] | Ajnbiun ‘asiyinuapi Ja41nbay ayl ylim pajeusleduod usypn 1URYIISIN

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

866T ‘T€ Aey 9|ge L sluswsa|j ejeq - g Xauuy 8-9

eleq
Areuonauiasig

Jen 0¢d6, | ..., 10,0/, uod o}e] €182 O31/0S|I 01 Buipaodge g >oeul Jo Lied Areuonalssiq Z Moed

eleq

Areuonauiasig

Jen AdTd6, | L., 10.0., sue o}e] €182 O31/0S|1 01 Buipaodge T >oeul Jo Lied Areuonalssiq T Yoed]

syjnsay

uonedlsp

g G6, - q Jeulwlial | [eulwlial 8yl WoJ) Usas Se suoljouny Juaiaylp ayl Jo snieis leulwiaa]

|]0J1u09 [euoileiado s11 pue ‘Aqljiqeded suoizedIIuNWWOod

T GE46, - Zu leulwiia] S} ‘leulwJal 3yl JO JUSWUOIIAUS 3yl Saledlpu] adA] [eulwaal

eleq

sasodand juswabeuew j1uswabeuen

8-T .adT4e, - o} leulwa | S 10) pJed ayl Ag pasn anjen oiyoads-uonesnjddy MSIY [eulws |

uoneolnuap|

8 D146, - g ue [eulwia] | 1uByIJSW B e [eulwlal e Jo uonredo] anbiun syl ssreubisaq leulwiaa]

aiv sul Hwim

% 49146, q [eulwiial | yum uonounfuod ul feuiwial ayy ul 1iwij 4004 8yl sa1esipu] 100|4 [eulwia |

99TE 0S| 01 buipioage 3po) A1uno)d

z V146, - eu leulwiia] pajuasaadal ‘Jeulwial 8yl Jo A13Unod ayl saleslpu] leulwiaa]

[eurwial ay3 Jo sanijigeded san|iqeded

e ££46, - q leulwiia] A11a4n23s pue ‘NAD ‘Indul elep paed ayl saeaipuj leulwiaa]

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

6-9 9|]eL Ssluswa|7 eleq - d Xauuy 866T ‘T€ Aey

AAdININAA aled
e V6, - gu [eurwiaa] pasiioylne sem uoljoesue.) ayl 1eyl ayep [eao] uonoesuel |
L1¢¥ OSI 1uauodx3
01 Buipaoage pajussaadal Junowe uoiloesuedl ayl Jo 1ybui Aduaiin)d
T 9e4¢, - Tu [eulwiaa] | ayy wody uiod [ewiap ayi jo uoilsod paljdwi ayl sa1esipu] uonoesuel]
LT2v OSI | 9poD Aduasin)
z wve4ds, - cu [eulwaa] | 01 Buipiodde uonoesueil 8yl Jo apod AdUalingd ayl sa1edlpu| uonoesuel |
anjeA yseH
uomnyesny1oads | (D) 81edyi8)d
0z 86, - q [eulwiaa] SIY1 JO €4 Xauuy ul paiy1dads uoilouny ysey e Jo 1jnsay uonoesuel]
(hoal)
1s11 398l00
FASTA ! anjeA yseH D1 2yl buneaauab ul feuiwiasl | ereq a1edlyilas)d
dn “rea L6, | L1, 10,0L, q ele]| ay3 Aq pasn aq 01 (Y3bus| pue Bel) s308lqo erep Jo 1si7 uonoesuel |
q $91AQ 8]0YyM a1Nsus 01 pPapaau JI .4, "Xay Yiim ped
“JeA ‘u (swa1sAs JuswAed fenpialpul Ag auljap)ereq Ateuonnatasig
cu 9p0) 90INIBS
v u (WWAA) 81e@ uolreaidx3
q (.@, "xay) Joresedss plaiH
6T 01 dn "Jea ‘u JaquinN 1unoddy Adewlid
:SMOJ|0) Se ‘DY
6T 01 pue ‘|aulluss pus ‘|aunuss 1els Bulpnjoxs ‘€182 DJ1/OSI | ered 1us|eAIinb3
dn "gea .G, /1,10 .0/, q o)) 01 Bulploooe g Moeal ayl Jo S1USWIS BIep a8yl suleluo) Z2>oed
yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN
866T 'TE Aey 9|ge] susws|g eleq - g Xxsuuy 01-d

Areuonaiq sjuawsa|g eleq - I-g a|qel

Ayijigeded auljuo INOYUM [eUILLISY B Ul Pamo|[e HwiT suliyo

uonesidde DD| SIY3 404 SUOIIOESUEBIY BUIHO BAIINIBSUOD 9AI1N23SU0)D

T £246, | ../, 10 .0/, q oo JO Jaguinu winwixew ay3} 10} aduaiajaad paljioads-1anssj EQQD_

weab01dAid e Jo uoneiauab laquinN

% ,E46, - q [eulwia | ay1 01 ssausnbiun pue AljigelaeA apinoid 01 anjea a|gerdipaidun

9p0) bulssad0ad /86T:€858 OSI 40 SHBIP 0M1 1S114 AL} adAL

T 06, - Zu [eulwia | Aqg pajussaadau ‘uoinoesuedy jeioueul) jo adAl ayl saqealpul] uolnjoesueld |

SSINWHH swl |

e T246, - gu [eulwiaa] pasiioyine sem uoldesued] ayj yeyl awil [eao] uonoesuel |

uolrew.ou]

sniels

4 .46, - q leulwiaa] uolloesue.] e Ul pawJoyiad suollouny syl sayedlpu| uonoesuel |

la1uno)

uolloesue.] Yyoes 4o} suo Aq aouanbas

V-2 TIv46, - 8- U leulwiaa] pajuawialoul SI eyl [eulwlal ayl Ag paulejurew 1a1unod uonoesuel |

YA YA 4 jJuauodx3g

0S| 01 Bulpiodge pajuasaidal apo) Adualind 93uUd1a)oy Aduaiin)d

uonoesueld] a8yl Yiim ‘Junowe uoijoesuedl syl Jo 1ybia ERIEYETEY

T .as4e, - Tu Jeulwial | 8yl wody juiod fewidsp ayi jo uonisod parjdwi ayl seyedipu] uonoesuel |

3apo) Aoduaaun) uonedijddy aya 9apo) Aduaain)d

W0} JUBJBlIp SI 8poD Aduaiund uoioesueld] ayj ased ul ERIEYETEY

4 D46, - cu leulwaa | [eurwial ayl Ag pasn Asuaaind uowwod ayl buluyap apod uolnjoesueu |

ereq

(N1d) 1equinN

uoneolnuap|

UOITBIIIIBA leuos.iad

“Jen .66, - q [eulwia | NId 3yl Jo asodund ayy 40} Japjoypted ayl Aq pasalus eleqg co_uomwcm._._._

yibua be | arejdwal 1ew.ioH 921n0S uondiosaq aweN

T1-d 9|]eL Ssluswa|7 eleq - d Xauuy 866T ‘T€ Aey

U310 U1 N0 ISABU UED ,/ /, 10,0/, 81e|dWia] Ul JNd20 ued Jeyl eleq 910N |

"e1ep Buneuslesuod usym saljdde ajna awes ay| "pPadols Ajjeudalul si 11 moy Jo ssajpiebal ‘1spao moj 01 43P0
ybiy wo.y sapao ul passed ag sAemje [eys 1l ‘(Jeulw.al 0] pJed ‘sjdwexs 10j) Jayloue 0] A111Us aUO WOIJ PAAOW SI BIep U3YMA

$9049Z [ewidapexay buijrey ym papped pue paiyiasni 149 SI SUe Jewo) Ul Juswaje elep y e
$80497 [ewidapexay Buijresy yum papped pue paiasni 14s] S1 ue Jew.o) Ul JUSWIIB Blep Y
S, rewdapexay Buljresn yum papped pue paipiasnil 14a] S1 ud 1ewio) Ul JUSWS|d BIep Y
$S90497 ewidapexay Buipes| yum papped pue paiasnl 1ybia S u jewlo) ul Juswsje elep Yy o

:Ajdde sajnua Buimojjoj ayl “erep jenioe ayl Jo Yyrbus| ay ueyl aaqeaub si 19alqo eyep syl J0) paulap yibus| syl usymn

56T e Ko alqeL SIUaWs|3 ereq - g Xauuy ctd

May 31, 1998 Annex B - Data Elements Table B-13

The tags allocated to the data elements are according to Table B-2:

Name Template Tag
Application Identifier (AID) ‘61’ ‘4F'
Application Label ‘61’ ‘50’
Command to Perform ‘6l ‘52’
Track 2 Equivalent Data 70’ or ‘77 ‘57
Application Primary Account Number (PAN) 70’ or ‘77 ‘BA’
Cardholder Name 70" or 77 ‘5F20°
Application Expiration Date 70’ or ‘77 ‘5F24’
Application Effective Date 70’ or ‘77 ‘5F25’
Issuer Country Code 70 or ‘77 ‘5F28’
Transaction Currency Code - ‘BF2A’
Language Preference ‘A5’ ‘S5F2D’
Service Code 70" or 77 ‘5F30°
Application Primary Account Number (PAN) Sequence 70’ or ‘77 ‘5F34’
Number
Transaction Currency Exponent - ‘5F36’
Application Template 70’ or ‘77 ‘61’
File Control Information (FCI) Template - ‘6F
Application Elementary File (AEF) Data Template - 70’
Issuer Script Template 1 - Tr
Issuer Script Template 2 - 72
Directory Discretionary Template ‘61’ ‘73
Response Message Template Format 2 - 7T
Response Message Template Format 1 - ‘80’
Amount, Authorised (Binary) - ‘81
Application Interchange Profile ‘77 or ‘80’ ‘82’
Command Template - ‘83’
Dedicated File (DF) Name ‘6F’ ‘84’
Issuer Script Command ‘71 or ‘72 ‘86’
Application Priority Indicator ‘61’ or ‘A5’ ‘87
Short File Identifier (SFI) ‘A5’ ‘88’
Authorisation Code - ‘89’
Authorisation Response Code - ‘A’
Card Risk Management Data Object List 1 (CDOL1) 70’ or ‘77 ‘8C’
Card Risk Management Data Obiject List 2 (CDOL?2) 70’ or ‘77 ‘8D’
Cardholder Verification Method (CVM) List 70’ or ‘77 ‘8E’
Certification Authority Public Key Index 70’ or ‘77 ‘8F’
Issuer Public Key Certificate 70’ or ‘77 ‘90’
Issuer Authentication Data - or
Issuer Public Key Remainder 70’ or ‘77 ‘92’
Signed Static Application Data 70’ or ‘77 ‘93’
Application File Locator (AFL) ‘77 or ‘80’ ‘94’
Terminal Verification Results - ‘95’
Transaction Certificate Data Object List (TDOL) 70’ or ‘77 ‘97’
Transaction Certificate (TC) Hash Value - ‘98’
Transaction Personal Identification Number (PIN) Data - ‘99’
Transaction Date - QA

B-14 Annex B - Data Elements Table May 31, 1998

Name Template Tag
Transaction Status Information - ‘OB’
Transaction Type - ‘aC’
Directory Definition File (DDF) Name ‘61’ ‘oD’
Acquirer Identifier - ‘OF01’
Amount, Authorised (Numeric) - ‘OF02’
Amount, Other (Numeric) - ‘OF03’
Amount, Other (Binary) - ‘OF04’
Application Discretionary Data 70’ or ‘77 ‘OF05’
Application Identifier (AID) - ‘OF06’
Application Usage Control 70’ or ‘77 ‘OF07’
Application Version Number 70’ or ‘77 ‘OF08’
Application Version Number - ‘OF09’
Cardholder Name -Extended 70" or 77 ‘OF0B’
Issuer Action Code - Default 70" or 77 ‘OF0D’
Issuer Action Code - Denial 70" or 77 ‘OFOF’
Issuer Action Code - Online 70" or 77 ‘OFOF
Issuer Application Data ‘77 or ‘80’ ‘OF10’
Issuer Code Table Index ‘A5’ ‘9F1T
Application Preferred Name ‘61’ ‘9F12’
Last Online Application Transaction Counter (ATC) - ‘OF13’
Register
Lower Consecutive Offline Limit 70" or 77 ‘9F14
Merchant Category Code - ‘OF15’
Merchant Identifier - ‘OF16’
Personal Identification Number (PIN) Try Counter - ‘OF17
Issuer Script Identifier ‘71 or ‘72 ‘OF18’
Terminal Country Code - ‘OF1A’
Terminal Floor Limit - ‘OF1B’
Terminal ldentification - ‘OF1C
Terminal Risk Management Data - ‘OF1D’
Interface Device (IFD) Serial Number - ‘OF1FE’
Track 1 Discretionary Data 70’ or ‘77 ‘OF1F
Track 2 Discretionary Data 70’ or ‘77 ‘OF20’
Transaction Time - ‘OF21
Certification Authority Public Key Index - ‘OF22’
Upper Consecutive Offline Limit 70’ or ‘77 ‘OF23’
Application Cryptogram ‘77 or ‘80 ‘OF26’
Cryptogram Information Data ‘77 or ‘80’ ‘OF27
ICC PIN Encipherment Public Key Certificate ‘70’ or 77 ‘9F2D’
ICC PIN Encipherment Public Key Exponent ‘70’ or ‘77 ‘OF2FE’
ICC PIN Encipherment Public Key Remainder ‘70’ or ‘77 ‘OF2F’
Issuer Public Key Exponent 70’ or ‘77 ‘OF32’
Terminal Capabilities - ‘OF33’
Cardholder Verification Method (CVM) Results - ‘OF34’
Terminal Type - ‘OF35’
Application Transaction Counter (ATC) ‘77 or ‘80 ‘OF36’
Unpredictable Number - ‘OF37
Processing Options Data Obiject List (PDOL) ‘A5’ ‘OF38’

May 31, 1998 Annex B - Data Elements Table B-15

Name Template Tag

Point-of-Service (POS) Entry Mode - ‘OF39’
Amount, Reference Currency - ‘OF3A’
Application Reference Currency 70’ or ‘77 ‘OF3B’
Transaction Reference Currency - ‘OF3C’
Transaction Reference Currency Exponent - ‘OF3D’
Additional Terminal Capabilities - ‘OF40’
Transaction Sequence Counter - ‘9F41
Application Currency Code 70’ or ‘77 ‘OF42’
Application Reference Currency Exponent 70’ or ‘77 ‘OF43’
Application Currency Exponent - ‘OF44’
Data Authentication Code - ‘OF45’
ICC Public Key Certificate 70’ or ‘77 ‘OF46’
ICC Public Key Exponent ‘70’ or ‘77 ‘OF47
ICC Public Key Remainder 70’ or ‘77 ‘OF48’
Dynamic Data Object List (DDOL) 70’ or ‘77 ‘OF49’
Static Data Authentication Tag List - ‘OF4A’
Signed Dynamic Application Data - ‘OF4B’
File Control Information (FCI) Proprietary Template ‘6F’ ‘A5’
File Control Information (FCI) Issuer Discretionary ‘A5’ ‘BFOC’
Data

Table B-2 - Data Elements Tags

B-16 Annex B - Data Elements Table May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

May 31, 1998 Annex C - Data Objects C-1

Annex C - Data Objects
Cl. Coding of BER-TLV Data Objects

As defined in ISO/IEC 8825, a BER-TLV data object consists of 2-3 consecutive
fields:

« The tag field (T) consists of one or more consecutive bytes. It codes a class, a
type, and a number (see Table C-1). The tag field of the data objects described in
this specification is coded on one or two bytes.

« The length field (L) consists of one or more consecutive bytes. It codes the length
of the following field. The length field of the data objects described in this
specification is coded on one, two, or three bytes.

« The value field (V) codes the value of the data object. If L =‘00’, the value field is
not present.

A BER-TLV data object belongs to one of the following two categories:

« A primitive data object where the value field contains a data element for financial
transaction interchange.

« A constructed data object where the value field contains one or more primitive or
constructed data objects. The value field of a constructed data object is called a
template.

The coding of BER-TLV data objects is defined for as follows.

Cl1l.1 Coding of the Tag Field of BER-TLV Data Objects

The first byte of the tag field of a BER-TLV data object is according to Table C-1:

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning

Universal class

Application class

Context-specific class

Private class

0 Primitive data object

1 Constructed data object

1 | 1| 1| 1| 1 |Seesubsequentbytes
Any other value Tag number

Table C-1 - Tag Field Structure (First Byte) BER-TLV

Rk O|0
= OO

C-2 Annex C - Data Objects May 31, 1998

According to ISO/IEC 8825, Table C-2 defines the coding rules of the subsequent
bytes of a BER-TLV tag when tag numbers > 31 are used (that is, bits b5 - b1l of the
first byte equal '11111").

b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 Meaning
1 Another byte follows
0 Last tag byte

Any value >0 (Part of) tag number

Table C-2 - Tag Field Structure (Subsequent Bytes) BER-TLV

The coding of the tag field of a BER-TLV data object is according to the following
rules:

» The following application class templates defined in ISO/IEC 7816 apply: ‘61’ and
‘6F.’

» The following range of application class templates is defined in Part Il: ‘70’ to
‘7TF’. The meaning is then specific to the context of an application according to
this specification. Tags '78’, ‘'79’, '7D’, and ‘7E’ are defined in ISO/IEC 7816-6 and
are not used in this specification.

» The application class data objects defined in ISO/IEC 7816 and described in Part
Il are used according to the ISO/IEC 7816 definition.

» Context-specific class data objects are defined in the context of this specification
or in the context of the template in which they appear.

* The coding of primitive context-specific class data objects in the ranges ‘80’ to ‘OF’
and ‘9F00’ to ‘9F4F' is reserved for this specification.

* The coding of primitive context-specific class data objects in the range ‘9F50’ to
‘OF7F is reserved for the payment systems.

* The coding of primitive and constructed private class data objects is left to the
discretion of the issuer.

C1.2 Coding of the Length Field of BER-TLV Data Objects

The coding of the length field is as follows.

When bit b8 of the most significant byte of the length field is set to O, the length
field consists of only one byte. Bits b7 to bl code the number of bytes of the value
field. The length field is within the range 1 to 127.

When bit b8 of the most significant byte of the length field is set to 1, the
subsequent bits b7 to b1 of the most significant byte code the number of subsequent
bytes in the length field. The subsequent bytes code an integer representing the

May 31, 1998 Annex C - Data Objects C-3

number of bytes in the value field. For example, three bytes are necessary to
express up to 65,535 bytes in the value field.

C1.3 Coding of the Value Field of Data Objects

A data element is the value field (V) of a primitive BER-TLV data object. A data
element is the smallest data field that receives an identifier (a tag).

A primitive data object is structured according to Table C-3:

| Tag (T) | Length (L) | Value (V) |

Table C-3 - Primitive BER-TLV Data Object (Data Element)

A constructed BER-TLYV data object consists of a tag, a length, and a value field
composed of one or more BER-TLV data objects. A record in an AEF governed by
this specification is a constructed BER-TLV data object. A constructed data object is
structured according to Table C-4:

Tag Length Primitive or ... | Primitive or constructed
(M) (L) constructed BER-TLV BER-TLYV data object
data object number 1 number n

Table C-4 - Constructed BER-TLV Data Object

c4

Annex C - Data Objects

May 31, 1998

THIS PAGE LEFT INTENTIONALLY BLANK

May 31, 1998 Annex D - Examples of Directory Structures D-1

Annex D - Examples of Directory Structures

D1. Examples of Directory Structures

Examples shown in this annex are intended to illustrate some possible logical ICC
file structures. Hierarchies of directory structures are shown, but there is no
implication as to the file hierarchies as defined by 1SO.

Figure D-1 illustrates a single application card with only a single level directory. In
this example, the MF (with file identification of ‘3F00’, as defined by ISO/IEC 7816-
4) acts as the only DDF in the card. The MF shall be given the unique payment
systems name assigned to the first level DDF as defined in Section 111-1.2, and the
FCI of the MF shall contain the SFI data object.

‘DIR A’ in this example may or may not be the I1SO DIR file, but it shall conform to

this specification, including the requirement that it has an SFI in the range 1 to 10.
The 1SO DIR file has a file identifier of ‘2F00’, which may imply that the SFI is not
in the correct range.

" Comra)

AD

ol

Figure D-1 - Simplest Card Structure Single Application

Figure D-2 gives an example of a multi-application card with a single directory. In
this example, the root file (MF) does not support an application complying with this
specification, and no restrictions are placed on the function of the MF. According to
ISO/IEC 7816-4, a DIR file may be present but is not used by the application
selection algorithm defined in Part I11. Also note that the directory does not have
entries for all ADFs (ADF2 to ADF5), as ADF5 is omitted. ADF5 can be selected
only by a terminal that ‘knows’ ADF5 may exist in the card. The manner in which
the terminal finds ADF5 is outside the scope of this specification.

D-2 Annex D - Examples of Directory Structures May 31, 1998

MF

DDF1 @

Aopzz@ ADF 3 ADF 4 Aopsﬂ@
© & 36 @

Figure D-2 - Single Level Directory

Figure D-3 is an example of a multi-application card with an n level directory
structure. The first level directory (‘DIR A’) has entries for 2 ADFs - ADF3 and
ADF4 - and a single DDF - DDF2. The directory attached to DDF2 (‘DIR B’) has
entries for two ADFs — ADF21 and ADF22 - and a single DDF - DDF6. DDF5 has
no entry in the root directory and can be found only by a terminal that ‘knows’ of the
existence of DDF5. The manner in which the terminal finds and selects DDF5 is
outside the scope of this specification, but the directory attached to DF5 ('DIR C)
may conform to this specification, and, if found by the terminal, may lead the
terminal to ADFs such as DF51, DF52, and DF53. DIR D, attached to DDF6, is a
third level directory and points to four files (not shown), which may be either ADFs
or more DDFs.

MF DDF1 @

) |ooFo2 ADF 3 ADF 4 DDF 5 @
DIR B % %
ADF51 |ADF52 |ADF 53

Figure D-3 - Third Level Directory

May 31, 1998 Annex E - Security Mechanisms E-1

Annex E - Security Mechanisms

E1l. Symmetric Mechanisms
E1.1 Encipherment

The encipherment mechanisms for secure messaging for confidentiality uses a 64-bit
block cipher ALG either in Electronic Codebook (ECB) Mode or in Cipher Block
Chaining (CBC) mode.

Encipherment of a message MSG of arbitrary length with Encipherment Session
Key Ks takes place in the following steps.

1. Padding and Blocking

* If the message MSG has a length that is not a multiple of 8 bytes, add a ‘80’
byte to the right of MSG, and then add the smallest number of ‘00’ bytes to
the right such that the length of resulting message MSG := (MSG || ‘80’ | |
‘00"] 00" |] ---11°00) is a multiple of 8 bytes.

» If the message MSG has a length that is a multiple of 8 bytes, the following
two cases can occur depending on pre-defined rules (see Part 1V of this
specification).

- No padding takes place: MSG := MSG.
- MSG is padded to the right with the 8-byte block
(‘'80°] ‘00" || ‘O0" | 100" || ‘OO’] ‘OO’ || ‘00" |1 00"
to obtain MSG.
SG is then divided into 8-byte blocks Xi, Xz, . . ., Xk
2. Cryptogram Computation
ECB Mode
Encipher the blocks X1, Xz, . . ., Xk into the 8-byte blocks Y1, Y2, ..., Yk with the
block cipher algorithm in ECB mode using the Encipherment Session Key Ks.

Hence computefori=1,2,... ,k:
Yi:= ALG(Ks)[Xi].

E-2 Annex E - Security Mechanisms May 31, 1998

CBC Mode

Encipher the blocks X, Xz, . . ., Xk into the 8-byte blocks Y1, Y2, ..., Yk with the
block cipher algorithm in CBC mode using the Encipherment Session Key Ks.
Hence computefori=1,2,... ,k:

Yi:= ALG(Ks)[Xi O Yiu],
with initial value Yo := (‘00" |] ‘00’ |] ‘00’ |] ‘00’ |] ‘00" |] ‘00" || ‘00’]| ‘00).

Notation:
Y =Y]l Y2]l ... 1] Yk =ENC(Ks)[MSG].

Decipherment is as follows.

1. Cryptogram Decipherment

ECB Mode
Computefori=1,2,... ,k:
Xi:= ALG1(K9)[Yi].
CBC Mode
Computefori=1,2,... ,k:

Xi = ALG(Ks)[Yi] O Yixz,
with initial value Yo := (‘00" || ‘00’ || ‘00’ || ‘00’ || ‘00" |] ‘00’ |] ‘00’ |] ‘00".

2. To obtain the original message MSG, concatenate the blocks X1, Xz, ..., Xk and if
padding has been used (see above) remove the trailing (‘80° || ‘00’ || ‘00" |] ...
| | ‘'00’) byte-string from the last block Xk.

Notation:
M = DEC(Ks)[Y].

E1.2 Message Authentication Code

The computation of an s-byte MAC (4 < s < 8) is according to ISO/IEC 9797 using a
64-bit block cipher ALG in CBC mode. More precisely, the computation of a MAC S
over a message MSG consisting of an arbitrary number of bytes with a MAC
Session Key Ks takes place in the following steps.

1. Padding and Blocking
Pad the message M according to ISO/IEC 7816-4 (which is equivalent to method

2 of ISO/IEC 9797), hence add a mandatory ‘80’ byte to the right of MSG, and
then add the smallest number of ‘00’ bytes to the right such that the length of

May 31, 1998 Annex E - Security Mechanisms E-3

resulting message MSG := (MSG || ‘80" || ‘00" || ‘00" || ... |] 00)isa
multiple of 8 bytes.

MSG is then divided into 8-byte blocks X1, Xz, . .., X«k.
2. MAC Session Key

The MAC Session Key Ks either consists of only a leftmost key block Ks = Ksc or
the concatenation of a leftmost and a rightmost key block Ks = (KsL | | Ksr).

3. Cryptogram Computation

Process the 8-byte blocks Xi, Xz, . . ., Xk with the block cipher in CBC mode using
the leftmost MAC Session Key block Ks:

Hi = ALG(Ksu)[Xi O Hia], fori=1,2,..., k.
with initial value Ho := (‘00" | | ‘00’ |] ‘00’ |] ‘00’ |] ‘00’] ‘00" |] ‘00’]| ‘00).

» Compute the 8 byte block Hk+1 in one of the following two ways. According
to the main process of ISO/IEC 9797:

Hk+1 = Hk.
* According to Optional Process 1 of ISO/IEC 9797:
Hik+1 = ALG(KsL)[ALG(Ksr)[Hk]].

The MAC S is then equal to the s most significant bytes of Hk+1.

E1.3 Session Key Derivation

Session keys Ks for secure messaging for integrity and confidentiality are derived
from unique Master Keys Kwm using diversification data R provided by the receiving
entity, hence

Ks := F(Km)[R].

To prevent replay attacks, the diversification data R should either be unpredictable,
or at least different for each session key derivation.

The only requirement for the diversification function F is that the number of
possible outputs of the function is sufficiently large and uniformly distributed to
prevent an exhaustive key search on the session key.

E-4 Annex E - Security Mechanisms May 31, 1998

E2. Asymmetric Mechanisms

E2.1 Digital Signhature Scheme Giving Message Recovery

This section describes the digital signature scheme giving message recovery using a
hash function according to ISO/IEC 9796-2. The main features of the scheme are
the following.

* Adding of redundancy in the signature by applying a hash function to the data to
be signed.

* Adding of a header and trailer byte in order to obtain a unique recovery
procedure and to prevent certain attacks as described in the informative
reference [2] in Annex G.

E2.1.1 Algorithms

The digital signature scheme uses the following two types of algorithms.

» Arreversible asymmetric algorithm consisting of a signing function Sign(S«)[]
depending on a Private Key Sk and a recovery function Recover(P«)[] depending
on a Public Key Pk. Both functions map N-byte numbers onto N-byte numbers
and have the property that

Recover(P«)[Sign(Sk)[X]] = X,
for any N-byte number X.

* A hashing algorithm Hash[] that maps a message of arbitrary length onto an 20-
byte hash code.

E2.1.2 Signature Generation

The computation of a signature S on a message MSG consisting of an arbitrary
number L of bytes takes place in the following way.

CASE 1: The length L of the message to be signed is at most N — 22 bytes

1. Compute the 20-byte hash value H := Hash[MSG] of the message MSG.
2. Define the (N — 21 — L)-byte block B as follows:

B:="4A'ifL=N - 22,

B:=(4B' || ‘BB’ || ‘BB’ || ... || ‘BB || ‘BA)ifL <N -22.

3. Define the byte E := ‘BC..

May 31, 1998 Annex E - Security Mechanisms E-5

4. Define the N-byte block X as the concatenation of the blocks B, MSG, H and E,
hence
X=B]IMSG]|HI]IBE).
5. The digital signature is then defined as the N-byte number

S = Sign(Sk)[X].

CASE 2: The length L of the message to be signed is larger than N — 22 bytes

1. Compute the 20-byte hash value H := Hash[MSG] of the message M.

2. Split MSG into two parts MSG =(MSG: | | MSGz), where MSG: consists of the N
— 22 leftmost (most significant bytes) of MSG and MSG: of the remaining (least
significant) L — N + 22 bytes of MSG.

3. Define the byte B := ‘6A".

4. Define the byte E := ‘BC'.

5. Define the N-byte block X as the concatenation of the blocks B, MSGs1, H and E,
hence

X=B|IMSG:]|HI]IE).
6. The digital signature S is then defined as the N-byte number
S := Sign(Sk)[X].
E2.1.3 Signature Verification

Signature verification takes place in the following way.

CASE 1: The length L of the message signed is at most N — 22 bytes

1. Check whether the digital signature S consists of N bytes.
2. Retrieve the N-byte number X from the digital signature S:
X = Recover(P«)[S].

3. Partition Xas X=(B || MSG || H || E), where

— B ="4A’ or B is a leading byte-string of the form (4B’ || ‘BB’ || ‘BB |] ... ||
‘BB’ | | ‘BA’). If none of these cases occur, the signature is rejected.

— His 20 bytes long.

E-6 Annex E - Security Mechanisms May 31, 1998

- E is one byte long.

— MSG consists of the remaining bytes.
4. Check whether the byte E is equal to ‘BC'.
5. Check whether H = Hash[MSG].
If and only if these checks are correct is the message accepted as genuine.

CASE 2: The length L of the message signed is larger than N — 22 bytes

1. Check whether the digital signature S consists of N bytes.
2. Retrieve the N-byte number X from the digital signature S:
X = Recover(P«)[S].

3. Partition Xas X=(B || MSG: || H || E), where

B is one byte long.

H is 20 bytes long.

E is one byte long.

MSG: consists of the remaining N — 22 bytes.

4. Check whether the byte B is equal to ‘6A".
5. Check whether the byte E is equal to ‘BC'.
6. Compute MSG = (MSG1 | | MSG2) and check whether H = Hash[MSG].

If and only if these checks are correct is the message accepted as genuine.

May 31, 1998 Annex F - Approved Cryptographic Algorithms F-1

Annex F - Approved Cryptographic Algorithms
F1. Symmetric Algorithms

F1.1 Data Encryption Standard (DES)

This 64-bit block cipher is the approved algorithm for secure messaging and is
standardised in 1SO 8731-1, ISO 8372, and ISO/IEC 10116. More precisely, both
the single DES encipherment and the triple DES encipherment versions described
below are approved to be used in the encipherment and MAC mechanisms described
in Annex E.

Triple DES encipherment involves enciphering an 8-byte plaintext block in an 8-
byte ciphertext block with a double-length (16-byte) secret key K = (KL | | Kr) as
follows:

Y = DES(KL)[DES*(KRr)[DES(KL)[X]]]-

Decipherment takes place as follows:

X = DES(KL)[DES(KR)[DESLKU[Y]]].
F2. Asymmetric Algorithms
F2.1 RSA Algorithm

This reversible algorithm is the approved algorithm for static and dynamic data
authentication and is used to this aim in the digital signature scheme described in
Annex E (see ISO/IEC 9796-2 and the informative reference [4] in Annex G). Both
odd and even public key exponents are allowed.

The algorithm produces a digital signature whose length equals the size of the
modulus used. The mandatory upper bounds for the size of the modulus are
specified in Table F-1.

Description Max. Length
Certification Authority Public Key Modulus 248 bytes
Issuer Public Key Modulus 247 bytes
ICC Public Key Modulus 128 bytes

Table F-1 - Mandatory Upper Bound for the Size in Bytes of the Moduli

Furthermore, the length Nca of the Certification Authority Public Key Modulus, the
length N, of the Issuer Public Key Modulus, and the length Nic of the ICC Public
Key Modulus shall satisfy Nic < N1 < Nca.

F-2 Annex F - Approved Cryptographic Algorithms May 31, 1998

In the choice of the lengths of the public key moduli, one should take into account
the life-time of the keys compared to the expected progress in factoring during that
life-time. The ranges (upper and lower bounds) for the key lengths mandated by
each of the payment systems are specified in their corresponding proprietary
specifications.

The length of the Issuer Public Key Exponent and the ICC Public Key Exponent is
determined by the issuer. The Certification Authority, Issuer and ICC Public Key
Exponents shall be equal to 2, 3, or 216 + 1

The Public Key Algorithm Indicator for this digital signature algorithm shall be
coded as hexadecimal ‘01’

The keys and signing and recovery functions for the RSA algorithm are specified
below. The cases for an odd and even public key exponent are considered
separately. Furthermore, minimum requirements for the key generation process are
specified.

F2.1.1 Odd Public Key Exponent

F2.1.1.1 Keys

The private key Sk of the RSA digital signature scheme with an odd public key
exponent e consists of two prime numbers p and q such that p—1 and q — 1 are co-
prime to e and a private exponent d such that

ed=1mod (p—1)(g-1).

The corresponding public key Pk consists of the public key modulus n = pg and the
public key exponent e.

F2.1.1.2 Signing Function

The signing function for RSA with an odd public key exponent is defined as
S = Sign(Sk)[X] :=Xdmod n,0 < X < n,

where X is the data to be signed and S the corresponding digital signature.

F2.1.1.3 Recovery Function

The recovery function for RSA with an odd public key exponent is equal to

X = Recover(Pk)[S] := S®mod n.

May 31, 1998 Annex F - Approved Cryptographic Algorithms F-3

F2.1.2 Even Public Key Exponent
F2.1.2.1 Keys

The private key Sk of the RSA digital signature scheme with an even public key
exponent consists of two prime numbers p and g such that p=3 mod8andq =7
mod 8 and a private exponent d such that

ed=1mod %lcm(p -1, q-1).

Note that the special case e = 2 is better known as the Rabin variant of RSA (see
reference [3] in Annex G). In that case, the private exponent is equal to

d=(pg—-p-q+5)8.

The corresponding public key Pk consists of the public key modulus n = pg and the
public key exponent e.

F2.1.2.2 Signing Function
The signing function for RSA with an even public key exponent is defined as
S = Sign(Sk)[X] := X4 mod n, if the Jacobi symbol (X | n) =1,
S = Sign(Sk)[X] := (X/2)4 mod n, if the Jacobi symbol (X | n) =-1,

where X is the data to be signed and S the corresponding digital signature.
The data block X is a nonnegative integer less than n with the additional property
that its least significant byte is equal to ‘BC’. This is to ensure that the recovery
process is unique. Note that this is always the case when RSA is used in the digital
signature scheme described in Annex E2.1.
F2.1.2.3 Recovery Function
The recovery function for RSA with an even public key exponent is as follows.
1. Compute Y =S¢ mod n.
2. The recovered data is obtained by one of the following cases.

(a) If the least significant byte of Y is equal to ‘BC’, X :=Y.

(b) If the least significant byte of 2Y is equal ‘BC’, X := 2Y.

(c) If the least significant byte of n — Y is equal to ‘BC’, X :=n-Y.

(d) If the least significant byte of 2(n —Y) is equal to ‘BC’, X :=2(n-Y).

F-4 Annex F - Approved Cryptographic Algorithms May 31, 1998

If none of these cases occur, the signature shall be rejected.
F2.1.3 Key Generation
Payment systems and issuers shall be responsible for the security of their respective

RSA public/private key generation processes. Examples of secure key generation
methods can be found in reference [1] in Annex G.

F3. Hashing Algorithms
F3.1 Secure Hash Algorithm (SHA-1)

This algorithm is standardised as FIPS 180-1.18 SHA-1 takes as input messages of
arbitrary length and produces a 20-byte hash value.

The Hash Algorithm Indicator for this hashing algorithm shall be coded as
hexadecimal ‘01’

18 SHA-1 is also standardised in ISO/IEC 10118-3.

May 31, 1998 Annex G - Informative References G-1

Annex G - Informative References

1. A. Bosselaers and B. Preneel (eds.), Integrity Primitives for Secure Information
Systems, Final Report of the RACE Integrity Primitives Evaluation (RIPE,
RACE R1040), LNCS 1007, Springer-Verlag, 1995.

2. L. Guillou, J.-J. Quisquater, M. Walker, P. Landrock, and C. Shaer, ‘Precautions
taken against various potential attacks in ISO/IEC 9796,” Advances in
Cryptology — Proceedings of Eurocrypt’90, LNCS 473, I. B. Damgard Ed.,
Springer-Verlag, 1991, pp. 465-473.

3. M. O. Rabin, Digitalized Signatures and Public-Key Functions as Intractable as
Factorization, Massachusetts Institute of Technology Technical Report
MIT/LCS/TR-212, 1979.

4. R. L. Rivest, A. Shamir, and L. Adleman, ‘A method for obtaining digital
signatures and public key cryptosystems,” Communications of the ACM, vol. 21,
1978, pp. 120-126.

5. G. J. Simmons Ed., Contemporary Cryptology: The Science of Information
Integrity, IEEE Press, Piscataway, N.J., 1992.

